分析 利用Sn=-$\frac{1}{2+{S}_{n-1}}$及a1=-$\frac{2}{3}$,寫出前幾項的值,進而猜測:Sn=-$\frac{n+1}{n+2}$,再用數(shù)學歸納法證明即可.
解答 解:∵Sn+$\frac{1}{{S}_{n}}$+2=an(n≥2),
∴Sn-1+2+$\frac{1}{{S}_{n}}$=0,即Sn=-$\frac{1}{2+{S}_{n-1}}$,
∵a1=-$\frac{2}{3}$,即S1=-$\frac{2}{3}$,
∴S2=-$\frac{1}{2+{S}_{1}}$=-$\frac{1}{2-\frac{2}{3}}$=-$\frac{3}{4}$,
S3=-$\frac{1}{2+{S}_{2}}$=-$\frac{1}{2-\frac{3}{4}}$=-$\frac{4}{5}$,
猜測:Sn=-$\frac{n+1}{n+2}$.
下面用數(shù)學歸納法來證明:
①當n=1時,顯然成立;
②假設當n=k時,有Sk=-$\frac{k+1}{k+2}$,
∵Sn+$\frac{1}{{S}_{n}}$+2=an(n≥2),
∴Sk+1=-$\frac{1}{2+{(S}_{k+1}-{a}_{k+1})}$
=-$\frac{1}{2+{S}_{k}}$
=-$\frac{1}{2-\frac{k+1}{k+2}}$
=-$\frac{1}{\frac{k+3}{k+2}}$
=-$\frac{k+2}{k+3}$
=-$\frac{(k+1)+1}{(k+1)+2}$,
即當n=k+1時命題也成立;
由①、②可知:Sn=-$\frac{n+1}{n+2}$.
故答案為:-$\frac{n+1}{n+2}$.
點評 本題考查數(shù)列的前n項和,考查運算求解能力,考查數(shù)學歸納法,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4:1 | B. | 3:1 | C. | 2:1 | D. | 5:1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 2 | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com