在復(fù)數(shù)范圍內(nèi)解方程:z2-4|z|+3=0.

解:設(shè)z=x+yi (x、y∈R),
則原方程變成(2分)
??(4分)
?
∴原方程的解為,±1,±3.(6分)
分析:設(shè)z=x+yi (x、y∈R),然后代入z2-4|z|+3=0進(jìn)行化簡變形,再根據(jù)復(fù)數(shù)相等的定義建立等式關(guān)系,解之即可求出復(fù)數(shù)z.
點評:本題主要考查了復(fù)數(shù)的模,以及復(fù)數(shù)相等的重要條件,同時考查了計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)數(shù)范圍內(nèi)解方程|z|2+(z+
.
z
)i=
3-i
2+i
(i為虛數(shù)單位).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2004•黃浦區(qū)一模)在復(fù)數(shù)范圍內(nèi)解方程:z2-4|z|+3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)數(shù)范圍內(nèi)解方程|z|2+(z+)i=(i為虛數(shù)單位).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆江蘇省無錫市高二下期中數(shù)學(xué)試卷(成志班)(解析版) 題型:解答題

在復(fù)數(shù)范圍內(nèi)解方程.(i為虛數(shù)單位)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011江蘇省第二學(xué)期高二期中數(shù)學(xué)(理科)試題 題型:解答題

(Ⅰ)(20分)在復(fù)數(shù)范圍內(nèi)解方程(i為虛數(shù)單位)

   (Ⅱ)設(shè)z是虛數(shù),ω=z+是實數(shù),且-1<ω<2

(1)求|z|的值及z的實部的取值范圍;(10分)

(2)設(shè)u=,求證:u為純虛數(shù);(5分)

(3)求ω-u2的最小值,(5分)

 

查看答案和解析>>

同步練習(xí)冊答案