分析 依據(jù)“中間的數(shù)從第三行起,每一個(gè)數(shù)等于它兩肩上的數(shù)之和”則第二個(gè)數(shù)等于上一行第一個(gè)數(shù)與第二個(gè)數(shù)的和,即有an+1=an+n(n≥2),再由累加法求解.
解答 解:把第n行(n≥2)第2個(gè)數(shù)記為an,
則由題意可知a2=2,a3=4,a4=7,a5=11,
所以a3-a2=2,a4-a3=3,a5-a4=4…an-an-1=n-1,
以上n-1個(gè)等式相加得,an-a2=2+3+…+(n-1)=$\frac{(n-2)(n+1)}{2}$,
所以an=2+$\frac{(n-2)(n+1)}{2}$=$\frac{{n}^{2}-n+2}{2}$(n≥2),
故答案為:18;$\frac{{n}^{2}-n+2}{2}$.
點(diǎn)評 本題通過三角數(shù)表構(gòu)造了一系列數(shù)列,考查了數(shù)列的通項(xiàng)及求和的方法,還考查了數(shù)列間的關(guān)系,入題較難,知識點(diǎn),方法活,屬中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1]∪[1,+∞) | B. | (-∞,-1] | C. | [1,+∞) | D. | (-∞,-1]∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com