6.圓(x-1)2+(y-2)2=1的圓心坐標(biāo)是( 。
A.(1,2)B.(-1,-2)C.(2,1)D.(-2,-1)

分析 根據(jù)圓的標(biāo)準(zhǔn)方程的特征求出圓心的坐標(biāo).

解答 解:根據(jù)圓的標(biāo)準(zhǔn)方程的特征,可得圓(x-1)2+(y-2)2=1的圓心坐標(biāo)為(1,2),
故選:A.

點(diǎn)評(píng) 本題主要考查圓的標(biāo)準(zhǔn)方程的特征,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知向量$\overrightarrow a=(t,0,-1),\overrightarrow b=(2,5,{t^2})$,若$\overrightarrow a⊥\overrightarrow b$,則t=0或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.△ABC是邊長(zhǎng)為3的等邊三角形,$\overrightarrow{BF}$=λ$\overrightarrow{BC}$($\frac{1}{2}$<λ<1),過點(diǎn)F作DF⊥BC交AC邊于點(diǎn)D,交BA的延長(zhǎng)線于點(diǎn)E.

(1)當(dāng)λ=$\frac{2}{3}$時(shí),設(shè)$\overrightarrow{BA}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,用向量$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{EF}$;
(2)當(dāng)λ為何值時(shí),$\overrightarrow{AE}$•$\overrightarrow{FC}$取得最大值,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖為函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<$\frac{π}{2}$)的一段圖象.
(1)寫出函數(shù)f(x)的解析式和單調(diào)增區(qū)間;
(2)若$α∈(-\frac{π}{4},\frac{π}{4})$,$β∈(\frac{π}{4},\frac{3π}{4})$,且f($\frac{α}{2}$)=$\frac{\sqrt{26}}{13}$,f($\frac{β}{2}$-$\frac{π}{4}$)=$\frac{4\sqrt{13}}{13}$,求α+β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知角α的終邊與單位圓交于點(diǎn)P(x,y),且x+y=-$\frac{1}{5}$,則tan(α+$\frac{π}{4}$)=±$\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在平面直角坐標(biāo)系xOy中,點(diǎn)A(-1,-2),B(2,3).
(1)求向量$\overrightarrow{AB}$;
(2)若向量$\overrightarrow{a}∥\overrightarrow{AB}$,且$\overrightarrow{a}$=(1,k),求k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知:$\overrightarrow{a}$=(2sinx,2cosx),$\overrightarrow$=(cosx,-cosx),f(x)=$\overrightarrow{a}$$•\overrightarrow$.
(1)若$\overrightarrow{a}$與$\overrightarrow$共線,且x∈($\frac{π}{2}$,π),求x的值;
(2)求函數(shù)f(x)的周期;
(3)若對(duì)任意x∈[0,$\frac{π}{2}$]不等式m-2≤f(x)≤m+$\sqrt{2}$恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.方程$C_{11}^x=C_{11}^{2x-4}$的解為4或5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.某單位有青年職工、中年職工、老年職工共900人,其中青年職工450人,為迅速了解職工的家家聽到狀況,采用分層抽樣的方法從中抽取樣本,若樣本中的青年職工為15人,則抽樣的樣本容量為30.

查看答案和解析>>

同步練習(xí)冊(cè)答案