A. | 2π2 | B. | π2 | ||
C. | 2 | D. | 以上答案均不正確 |
分析 根據(jù)函數(shù)y=2sin(ωx+φ)(ω>0)的部分圖象,利用周期性求得ω,可得C、B的坐標(biāo),再根據(jù)線段EF關(guān)于點(diǎn)B對稱,利用兩個(gè)向量的加減法及其幾何意義求得要求式子的值.
解答 解:根據(jù)函數(shù)y=2sin(ωx+φ)(ω>0)的部分圖象可得
$\frac{3}{4}$•$\frac{2π}{ω}$=$\frac{7π}{12}$-(-$\frac{π}{6}$),
解得ω=2;
∵2•(-$\frac{π}{6}$)+φ=π,
∴φ=$\frac{4π}{3}$,
∴函數(shù)y=2sin(2x+$\frac{4π}{3}$),
可得C($\frac{5π}{6}$,0),
故AC的中點(diǎn)為B($\frac{π}{3}$,0);
由題意可得線段EF關(guān)于點(diǎn)B對稱,則
($\overrightarrow{AD}$-$\overrightarrow{EA}$)•(ω$\overrightarrow{AC}$)=($\overrightarrow{AD}$+$\overrightarrow{AE}$)•(ω$\overrightarrow{AC}$)
=2$\overrightarrow{AB}$•2$\overrightarrow{AC}$
=4|AB|•|AC|
=4•$\frac{T}{2}$•T
=2T2
=2•${(\frac{2π}{2})}^{2}$
=2π2.
故選:A.
點(diǎn)評 本題主要考查了正弦函數(shù)的圖象與性質(zhì),兩個(gè)向量的加減法及其幾何意義,是綜合題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 9 | C. | 10 | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com