2.已知函數(shù)f(x)=|x-a|-|x+1|,a∈R.
(Ⅰ)當a=1時,求不等式f(x)≤x2-x的解集;
(Ⅱ)若正實數(shù)m,n滿足2m+n=1,函數(shù)$f(x)≤\frac{1}{m}+\frac{2}{n}$恒成立,求實數(shù)a的取值范圍.

分析 (Ⅰ)通過討論x的范圍,求出不等式的解集即可;(Ⅱ)求出$\frac{1}{m}$+$\frac{2}{n}$的最小值,問題轉(zhuǎn)化為|a+1|≤8,解出即可.

解答 解:(Ⅰ)a=1時,f(x)=|x-1|-|x+1|,
f(x)≤x2-x即|x-1|-|x+1|≤x2-x,
x≥1時,x-1-x-1≤x2-x,即x2-x+2≥0,
解得:x≥2或x≤-1,(舍),
-1<x<1時,1-x-x-1≤x2-x,即x2+x≥0,解得:x≥0或x≤-1(舍),
x≤-1時,1-x+x+1≤x2-x,即x2-x-2≥0,
解得:x≥2(舍)或x≤-1,
綜上,不等式的解集是(-∞,-1]∪[0,+∞);
(Ⅱ)若正實數(shù)m,n滿足2m+n=1,
則$\frac{1}{m}$+$\frac{2}{n}$=($\frac{1}{m}$+$\frac{2}{n}$)(2m+n)=4+$\frac{n}{m}$+$\frac{4m}{n}$≥4+2$\sqrt{\frac{n}{m}•\frac{4m}{n}}$=8,
當且僅當n=2m即n=$\frac{1}{2}$,m=$\frac{1}{4}$時“=”成立,
函數(shù)$f(x)≤\frac{1}{m}+\frac{2}{n}$恒成立,即|x-a|-|x+1|≤|x-a-x-1|=|a+1|≤8,
解得:-9≤a≤7.

點評 本題考查了絕對值不等式問題,考查分類討論思想,是一道中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知a>0,函數(shù)f(x)=ax-x2.求f(x)≤1,x∈[0,1]恒成立的充要條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.若函數(shù)f(x)=$\left\{\begin{array}{l}{{a}^{x},x>1}\\{(4-\frac{a}{2})x+2,x≤1}\end{array}\right.$的值域為R,則實數(shù)a的取值范圍是(1,4].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.若zl=a+2i,z2=3-4i,且$\frac{z_1}{z_2}$為實數(shù),則實數(shù)a的值為$-\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)y=2sin(ωx+φ)(0<ω<2π)的部分圖象如圖所示,點A($-\frac{π}{6}$,0),B、C是該圖象與x軸的交點,過點B作直線交該圖象于D、E兩點,點F($\frac{7π}{12}$,0)是f(x)的圖象的最高點在x軸上的射影,則$(\overrightarrow{AD}-\overrightarrow{EA})•(ω\overrightarrow{AC})$的值是( 。
A.2B.π2
C.2D.以上答案均不正確

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.如圖,在矩形ABCD中,$AB=\sqrt{3},BC=1$,將△ACD沿折起,使得D折起的位置為D1,且D1在平面ABC的射影恰好落在AB上,則直線D1C與平面ABC所成角的正弦值為(  )
A.$\frac{1}{3}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.具有線性相關(guān)關(guān)系的變量x、y的一組數(shù)據(jù)如表所示.若y與
x0123
y-11m6
x的回歸直線方程為$\stackrel{∧}{y}$=3x-$\frac{3}{2}$,則m的值是( 。
A.4B.$\frac{9}{2}$C.5.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.從1、2、3、4、5、6這六個數(shù)字中任取兩個奇數(shù)和兩個偶數(shù),組成沒有重復數(shù)字的四位數(shù)的個數(shù)為( 。
A.300B.216C.180D.162

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若$cosB=\frac{4}{5}$,$cosC=\frac{5}{13}$,c=4,則a=$\frac{21}{5}$.

查看答案和解析>>

同步練習冊答案