(本小題滿分13分)已知圓經(jīng)過、兩點,且圓心在直線上.
(Ⅰ)求圓的方程;
(Ⅱ)若直線經(jīng)過點且與圓相切,求直線的方程.
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
己知圓 直線.
(1) 求與圓相切, 且與直線平行的直線的方程;
(2) 若直線與圓有公共點,且與直線垂直,求直線在軸上的截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)過點Q 作圓C:的切線,切點為D,且QD=4.
(1)求的值;
(2)設(shè)P是圓C上位于第一象限內(nèi)的任意一點,過點P作圓C的切線l,且l交x軸于點A,交y 軸于點B,設(shè),求的最小值(O為坐標(biāo)原點).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓 C方程為.
(1)若圓C與直線相交于M、N兩點,且OM⊥ON(O為坐標(biāo)原點),求m;
(2)在(1)的條件下,求以MN為直徑的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè)橢圓:的左、右焦點分別為,上頂點為,過點與垂直的直線交軸負半軸于點,且.
(1)求橢圓的離心率;
(2)若過、、三點的圓恰好與直線:相切,求橢圓的
方程;
(3)在(2)的條件下,過右焦點作斜率為的直線與橢圓交于、兩
點,在軸上是否存在點使得以為鄰邊的平行四邊形是菱形,
如果存在,求出的取值范圍,如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓內(nèi)一定點,為圓上的兩不同動點.
(1)若兩點關(guān)于過定點的直線對稱,求直線的方程.
(2)若圓的圓心與點關(guān)于直線對稱,圓與圓交于兩點,且,求圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線C1:(為參數(shù)),曲線C2:(t為參數(shù)).
(1)指出C1,C2各是什么曲線,并說明C1與C2公共點的個數(shù);
(2)若把C1,C2上各點的縱坐標(biāo)都拉伸為原來的兩倍,分別得到曲線.寫出的參數(shù)方程.與公共點的個數(shù)和C公共點的個數(shù)是否相同?說明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(14分)在平面直角坐標(biāo)系xOy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x
-4)2+(y-5)2=4.
(1)若點M∈⊙ C1, 點N∈⊙C2,求|MN|的取值范圍;
(2)若直線l過點A(4,0),且被圓C1截得的弦長為2 ,求直線l的方程;
(3)設(shè)P為平面上的點,滿足:存在過點P的無數(shù)多對互相垂直的直線l1和l2,它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,試求所有滿足條件的點P的坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
點P在正方體ABCD﹣A1B1C1D1的底面ABCD所在平面上,E是A1A的中點,且∠EPA=∠D1PD,則點P的軌跡是( 。
A.直線 | B.圓 | C.拋物線 | D.雙曲線 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com