15.在△ABC中,a=2bcosC,則△ABC的形狀為等腰三角形.

分析 先根據(jù)題設(shè)條件求得cosC的表達(dá)式,進(jìn)而利用余弦定理求得cosC的另一表達(dá)式,二者相等化簡整理求得b=c,進(jìn)而判斷出三角形為等腰三角形.

解答 解:∵a=2bcosC,
∴cosC=$\frac{a}{2b}$
∵cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$
∴$\frac{a}{2b}$=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$,化簡整理得b=c
∴△ABC為等腰三角形.
故答案為:等腰三角形.

點評 本題主要考查了解三角形的應(yīng)用和三角形形狀的判斷.解題的關(guān)鍵是利用了cosC這一橋梁完成了問題的轉(zhuǎn)化,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如果方程x2+$\frac{{y}^{2}}{k}$=2表示焦點在x軸上的橢圓,那么實數(shù)k的取值范圍是( 。
A.(0,2)B.(1,+∞)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知定義域為R的函數(shù)f(x)滿足f(x)=2f(2-x)-x2+8x-8,則曲線y=f(x)在點(2,f((2))處的切線方程是(  )
A.4x-y+4=0B.4x-y-4=0C.4x+y+4=0D.4x+y-4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.由不等式組$\left\{\begin{array}{l}{1≤x≤e}\\{lnx-y+1≥0}\\{2x-(e-1)y-2≤0}\end{array}\right.$確定的平面區(qū)域為M,由不等式組$\left\{\begin{array}{l}{1≤x≤e}\\{0≤y≤2}\end{array}\right.$確定的平面區(qū)域為N,在N內(nèi)隨機的取一點P,則點P落在區(qū)域M內(nèi)的概率為( 。
A.$\frac{1}{2e-2}$B.$\frac{e-2}{2e-2}$C.$\frac{3-e}{4e-4}$D.$\frac{e}{2e-2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)F1、F2是雙曲線${x^2}-\frac{y^2}{9}=1$的左、右焦點,點P在雙曲線上,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,則點P到x軸的距離等于$\frac{9}{10}\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知全集U={1,2,3},集合A={1},集合B={1,2},則A∪∁UB={1,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知f是有序數(shù)對集合M={(x,y)|x∈N*,y∈N*}上的一個映射,正整數(shù)數(shù)對(x,y)在映射f下對應(yīng)的為實數(shù)z,記作f(x,y)=z.對于任意的正整數(shù)m,n(m>n),映射f由下表給出:
(x,y)(n,n)(m,n)(n,m)
f(x,y)nm-nm+n
則使不等式f(2,x)≤3的解集為{1,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知△ABC中的內(nèi)角為A,B,C,重心為G,若2sinA$\overrightarrow{GA}$+$\sqrt{3}$sinB$\overrightarrow{GB}$+3sinC$\overrightarrow{GC}$=$\overrightarrow{0}$,則cosB=(  )
A.$\frac{1}{24}$B.$\frac{1}{12}$C.$\frac{1}{6}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.命題p:方程$\frac{x^2}{m-9}$+$\frac{y^2}{25-m}$=1表示橢圓;命題q:關(guān)于x的不等式|x+3|+|x-4|<m有解.若p∨q為真命題,p∧q為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案