A. | 8 | B. | 10 | C. | 12 | D. | 14 |
分析 設(shè)AB的中點為M,過A、B、M分別作AA1、BB1、MN垂直于直線x=-1于A1、B1、N,設(shè)∠AFx=θ,求出$sinθ=\frac{1}{{\sqrt{3}}}$,利用弦長公式,可得結(jié)論.
解答 解:拋物線y2=4x的焦點為F(1,0),設(shè)AB的中點為M,過A、B、M分別作AA1、BB1、MN垂直于直線x=-1于A1、B1、N,設(shè)∠AFx=θ,
由拋物線定義知:|MN|=$\frac{1}{2}(|A{A_1}|+|B{B_1}|)=\frac{1}{2}|AB|$,
∵|MC|=$\frac{{\sqrt{3}}}{2}|AB|$,∴|MN|=$\frac{1}{{\sqrt{3}}}$|MC|,
∵∠CMN=90°-θ,
∴$cos∠CMN=cos({90°}-θ)=\frac{|MN|}{|MC|}=\frac{1}{{\sqrt{3}}}$,即$sinθ=\frac{1}{{\sqrt{3}}}$,
又由拋物線定義知|AF|=$\frac{2}{1-cosθ}$,|BF|=$\frac{2}{1+cosθ}$,∴|AB|=$\frac{4}{{{{sin}^2}θ}}=12$.
故選:C.
點評 本題考查拋物線的方程與性質(zhì),考查拋物線的定義,正確運用拋物線的定義是關(guān)鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-$\frac{1}{2}$,$\frac{1}{2}$] | B. | [-1,1] | C. | [-$\frac{1}{2}$,1] | D. | [-1,2] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | 4$\sqrt{3}$ | D. | 3$\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com