解關(guān)于x的不等式|x-1|+a-2≤0(a∈R).
考點:絕對值不等式的解法
專題:不等式的解法及應(yīng)用
分析:不等式即|x-1|≤-a+2,再分a<2、a=2、a>2三種情況,分別求得它的解集.
解答: 解:∵|x-1|+a-2≤0(a∈R),∴|x-1|≤-a+2.
(1)當(dāng)a<2時,原不等式等價于a-2≤x-1≤-a+2,求得不等式的解集為{x|a-1<x<3-a};
(2)當(dāng)a=2時,原不等式等價于|x-1|≤0,故不等式的解集為{1};
(3)當(dāng)a>2時,原不等式的解集為ϕ.
點評:本題主要考查絕對值不等式的解法,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a>b>-1,則
1
a+1
1
b+1
的大小關(guān)系是( 。
A、
1
a+1
1
b+1
B、
1
a+1
1
b+1
C、
1
a+1
1
b+1
D、
1
a+1
1
b+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=1,an=an-1+n,(n≥2,n∈N*).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=
1
an
,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列的首項為31,若此數(shù)列從第16項開始小于1,求公差d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是等差數(shù)列,其前n項和為Sn,{bn}是等比數(shù)列,且a1=b1=2,a4+b4=27,S4-b4=10.
(Ⅰ)求數(shù)列{an}與{bn}的通項公式;
(Ⅱ)求Tn=a1b1+a2b2+…+anbn,n∈N+的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U={x|log2x≤2},集合A={x|0<x<3},B={x|-3<x≤3},求A∩B、∁UA、(∁UA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題P:函數(shù)f(x)=(2a-5)x是R上的減函數(shù).命題Q:在x∈R時,不等式x2-ax+2>0恒成立.若命題“P∪Q”是真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,∁UM={x|x<-1,或x≥2},N={x|1≤x≤3或x>5}.
(1)求M∩(∁UN);
(2)若集合P={x|a<x<a+4},M∩P=M,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3-
3
2
(a+2)x2+6x+b在x=2處取得極值.
(Ⅰ)求a的值及f(x)的單調(diào)區(qū)間;
(Ⅱ)若x∈[1,4]時,不等式f(x)>b2恒成立,求b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案