已知全集U=R,∁UM={x|x<-1,或x≥2},N={x|1≤x≤3或x>5}.
(1)求M∩(∁UN);
(2)若集合P={x|a<x<a+4},M∩P=M,求a的取值范圍.
考點(diǎn):集合關(guān)系中的參數(shù)取值問題,交、并、補(bǔ)集的混合運(yùn)算
專題:計(jì)算題,集合
分析:(1)求出M、∁UN,再求M∩(∁UN);
(2)M∩P=M,M⊆P,可得不等式,即可求a的取值范圍.
解答: 解:(1)由題意,M={x|-1≤x<2},∁UN={x|x<1或3<x≤5}.
∴M∩(∁UN)={x|-1≤x<1};
(2)∵M(jìn)∩P=M,
∴M⊆P,
∵P={x|a<x<a+4},
a+4≤3
a≥1
或a≤5,
∴a≤5.
點(diǎn)評:本題考查集合關(guān)系中的參數(shù)取值問題、交、并、補(bǔ)集的混合運(yùn)算,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:“x2-x-6<0”,命題q:“x2>1”,若命題“p且q”為真,求x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式|x-1|+a-2≤0(a∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線l的參數(shù)方程為
x=3+tcosα
y=4+tsinα
(t為參數(shù),α為傾斜角),圓C的參數(shù)方程為
x=1+2cosθ
y=-1+2sinθ
(θ為參數(shù)).
(1)若直線l經(jīng)過圓C的圓心,求直線l的斜率.
(2)若直線l與圓C交于兩個(gè)不同的點(diǎn),求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-3ax-1,a>0
(1)當(dāng)a=4,求f(x)的單調(diào)區(qū)間;
(2)若f(x)在x=-1處取得極值,直線y=m與y=f(x)的圖象有三個(gè)不同的交點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
2
x
+alnx
(1)若f(x)在x=1處取得極值.求a的值;
(2)若f(x)在[1,2]上為減函數(shù),求a的取值范圍;
(3)若g(x)=f(x)-x,當(dāng)a>0時(shí),是否存在a使得g(x)在(0,e]上有最小值0,若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

南海中學(xué)校園內(nèi)建有一塊矩形草坪ABCD,AB=50米,BC=25
3
米,為了便于師生平時(shí)休閑散步,總務(wù)科將在這塊草坪內(nèi)鋪設(shè)三條小路OE、EF和OF,考慮到校園整體規(guī)劃,要求O是AB的中點(diǎn),點(diǎn)E在邊BC上,點(diǎn)F在邊AD上,且∠EOF=90°,如圖所示.
(1)設(shè)∠BOE=α,試將△OEF的面積S表示成α的函數(shù)關(guān)系式,并求出此函數(shù)的定義域;
(2)在△OEF區(qū)域計(jì)劃種植海南省花三角梅,請你幫總務(wù)科計(jì)算△OEF面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax3+bx2+cx+d(a,b,c,d∈R)的圖象關(guān)于原點(diǎn)對稱,且x=1時(shí),f(x)取得極小值-
2
3

(1)求a,b,c,d的值;
(2)若x1,x2∈[-1,1],求證:|f(x1)-f(x2)|≤
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個(gè)內(nèi)角A,B,C滿足2B=A+C且所對的邊分別為a,b,c.
(1)求B;
(2)若a=
3
sinA+cosA,求當(dāng)a取最大值時(shí)A,b,c的值.

查看答案和解析>>

同步練習(xí)冊答案