計(jì)算:
lim
n→∞
1
n3+1
+
2
n3+2
+…+
n
n3+n
考點(diǎn):數(shù)列的極限
專題:計(jì)算題,點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:利用
lim
n→∞
k
n3+n
=0(k∈N*),
lim
n→∞
n
n3+n
=
lim
n→∞
1
n+
1
n
=0及其數(shù)列極限運(yùn)算法則即可得出.
解答: 解:∵
lim
n→∞
k
n3+n
=0(k∈N*),
lim
n→∞
n
n3+n
=
lim
n→∞
1
n+
1
n
=0.
lim
n→∞
1
n3+1
+
2
n3+2
+…+
n
n3+n
)=0.
點(diǎn)評(píng):本題考查了數(shù)列極限運(yùn)算法則,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

兩圓x2+y2+2x-4y+3=0與x2+y2-4x+2y+3=0上的點(diǎn)之間的最短距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2-|x|+2a-1 (a為實(shí)常數(shù)).
(1)判斷函數(shù)f(x)的奇偶性并給出證明;
(2)若函數(shù)f(x)在區(qū)間[1,2]上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)若a>0,設(shè)g(x)=|f(x)-x|在區(qū)間[-2,2]上的最大值為h(a),求h(a)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:sin
π
6
-cos2
π
4
cosπ-
1
3
tan2
π
3
-cosπ+sin
π
2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線L:y=m與雙曲線
x2
9
-
y2
25
=1的兩交點(diǎn)為P、Q,且OP⊥OQ,求m與P、Q的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線ax+by=ab(a>0,b<0)的傾斜角是( 。
A、arctan(-
a
b
)
B、arctan
a
b
C、π-arctan
a
b
D、
π
2
+arctan
a
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinθ
sin2θ
+cosθ
cos2θ
=-1(θ≠
2
k∈z),判斷θ是第幾象限角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l過(guò)點(diǎn)(3,-2)且與兩坐標(biāo)軸圍城一個(gè)等腰直角三角形,則l的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ex-e-x-2x.
(Ⅰ)證明:f(x)是奇函數(shù);
(Ⅱ)設(shè)g(x)=f(x)+e-x,求g(x)在[0,2]上的最值.

查看答案和解析>>

同步練習(xí)冊(cè)答案