9.若向量$\overrightarrow{a}$=(1,λ,2),$\overrightarrow$=(-2,1,1),$\overrightarrow{a}$,$\overrightarrow$夾角的余弦值為$\frac{1}{6}$,求λ.

分析 求出向量的數(shù)量積和模長(zhǎng),代入夾角公式列出方程解出λ.

解答 解:$\overrightarrow{a}•\overrightarrow$=-2+λ+2=λ,|$\overrightarrow{a}$|=$\sqrt{{1}^{2}+{λ}^{2}+{2}^{2}}$=$\sqrt{{λ}^{2}+5}$,$|\overrightarrow|$=$\sqrt{(-2)^{2}+{1}^{2}+{1}^{2}}$=$\sqrt{6}$.
∴cos<a,b>=$\frac{a•b}{|a||b|}$=$\frac{λ}{\sqrt{{λ}^{2}+5}\sqrt{6}}$=$\frac{1}{6}$,
解得λ=1.

點(diǎn)評(píng) 本題考查了向量的數(shù)量積運(yùn)算,向量的夾角,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知cosα=$\frac{4}{5}$,cosβ=$\frac{3}{5}$,β∈($\frac{π}{2}$,2π),0<α<β,求sin(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.己知圓C的半徑為4,圓心在x軸負(fù)半軸上,且與直線l1:4x+3y-4=0相切,又直線l2:mx+y+1=0與圓C相交于A、B兩點(diǎn).
(I)求圓C的方程;
(Ⅱ)求實(shí)數(shù)m的取值范圍;
(Ⅲ)若過(guò)點(diǎn)P(0,-2)的一條直線l與弦AB交于點(diǎn)Q,問(wèn):是否存在實(shí)數(shù)m,使得點(diǎn)Q同時(shí)滿足①Q(mào)是AB中點(diǎn),②PQ⊥AB?若存在,求出實(shí)數(shù)m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.函數(shù)y=$\frac{{x}^{2}-2x+5}{x-1}$(x≥3)的值域?yàn)閇4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓在x軸兩焦點(diǎn)為F1,F(xiàn)2,且|F1F2|=10,P為橢圓上一點(diǎn),∠F1PF2=$\frac{2π}{3}$,△F1PF2的面積為6$\sqrt{3}$,求橢圓的標(biāo)準(zhǔn)方程?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知在正三陵拄A1B1C1-ABC(側(cè)棱垂直于底面,且底面是正三角形)中,D、E分別是棱BC、CC1的中點(diǎn),AB=AA1=2.
(1)證明:BE⊥AB1;
(2)求二面角B-AB1-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知橢圓C1比橢圓${C_2}:\frac{x^2}{12}+\frac{y^2}{16}=1$的形狀更圓,則C1的離心率的取值范圍是(  )
A.$0<e<\frac{1}{2}$B.$0<e<\frac{{\sqrt{3}}}{3}$C.$\frac{1}{2}<e<1$D.$\frac{{\sqrt{3}}}{3}<e<1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.有下列說(shuō)法:
①梯形的四個(gè)頂點(diǎn)在同一個(gè)平面內(nèi);
②三條平行直線必共面;
③有三個(gè)公共點(diǎn)的兩個(gè)平面必重合.
其中正確的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖所示,AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,F(xiàn)為CD的中點(diǎn).
求證:
(Ⅰ)AF∥平面BCE;
(Ⅱ)平面BCE⊥平面CDE.

查看答案和解析>>

同步練習(xí)冊(cè)答案