如果數(shù)列{an}中,相鄰兩項(xiàng)an和an+1是二次方程xn2+3nxn+Cn=0的兩個(gè)根,當(dāng)a1=2時(shí),求{an}的通項(xiàng)公式和C100的值.
考點(diǎn):數(shù)列遞推式
專題:點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:根據(jù)根與系數(shù)之間的關(guān)系建立遞推關(guān)系,構(gòu)造方程組即可得到結(jié)論.
解答: 解:∵an和an+1是二次方程xn2+3nxn+Cn=0的兩個(gè)根,
∴an+an+1=-3n,①anan+1=Cn,
則an+2+an+1=-3(n+1)=-3n-3,②,
則②-①得an+2-an=-3,即當(dāng)所有的奇數(shù)項(xiàng)為等差數(shù)列,所有的偶數(shù)項(xiàng)為等差數(shù)列,公差都為-3,
∵a1=2,∴a2=-3-2=-5,
若n是奇數(shù),則an=2+(-3)×(
n+1
2
-1
)=
7-3n
2
,(此時(shí)奇數(shù)項(xiàng)的個(gè)數(shù)為
n+1
2

若n是偶數(shù),則an=-5+(-3)×(
n
2
-1)=
-3n-4
2
,(此時(shí)奇數(shù)項(xiàng)的個(gè)數(shù)為
n
2
).
故{an}的通項(xiàng)公式an=
7-3n
2
,
n是奇數(shù)
-3n-4
2
n是偶數(shù)

則C100=a100a101=
-3×100-4
2
×
7-3×101
2
=152×148=22496.
點(diǎn)評(píng):本題主要考查數(shù)列的通項(xiàng)公式的求解,以及遞推數(shù)列的應(yīng)用,構(gòu)造方程組結(jié)合等差數(shù)列的通項(xiàng)公式是解決本題的關(guān)鍵.綜合性較強(qiáng),有一定的難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)非零向量
a
b
,
c
滿足|
a
|=|
b
|,
c
=
a
+
b
,|
c
|=
3
|
a
|,則向量
a
b
的夾角為( 。
A、30°B、60°
C、90°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b大于0)的離心率為
1
2
,且過點(diǎn)(
3
3
2
).
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)橢圓的左頂點(diǎn)為A,過橢圓右焦點(diǎn)F的直線l交橢圓E于B,C(異于點(diǎn)A)兩點(diǎn),問直線AB,AC的斜率之積是否為定值?若是,求出該定值,若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正三棱柱ABC-A1B1C1中,D是BC的中點(diǎn),AA1=AB=2.
(Ⅰ)求證:A1C∥平面AB1D;
(Ⅱ)求點(diǎn)C1到平面AB1D的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的導(dǎo)數(shù).
(1)y=2x3-3x2+5x-4
(2)y=x(x2+
1
x
+
1
x3
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx+1(a>0),F(xiàn)(x)=
f(x) , x≥0
-f(x) , x<0
若f(-1)=0,且對(duì)任意實(shí)數(shù)x均有f(x)≥0成立.
(1)求F(x)的表達(dá)式;
(2)設(shè)函數(shù)g(x)=x+t,若函數(shù)F(x)與g(x)的圖象有三個(gè)不同交點(diǎn),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,函數(shù)f(x)=lnx-
a
x
-x.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若A、B是曲線y=f(x)上的任意不同兩點(diǎn),其橫坐標(biāo)分別為m、n,曲線y=f(x)在x=t處的切線與直線AB平行,求證:m+n>2t.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)被繩子牽著的小球做圓周運(yùn)動(dòng)(如圖).它從初始位置P0開始,按逆時(shí)針方向以角速度ω rad/s做圓周運(yùn)動(dòng).已知繩子的長(zhǎng)度為l,求:
(Ⅰ)P的縱坐標(biāo)y關(guān)于時(shí)間t的函數(shù)解析式;
(Ⅱ)如果ω=
π
6
rad/s,l=2,|φ|<
π
2
,當(dāng)t=
3
2
s時(shí),y首次達(dá)到最大值,求φ的值;
(Ⅲ)在(Ⅱ)中,試求小球到達(dá)x軸的正半軸所需的時(shí)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出兩個(gè)命題,
命題甲:關(guān)于x的不等式:x2+(a-1)x+a2<0的解集是∅;
命題乙:正比例函數(shù)y=(2a2-a-1)x圖象經(jīng)過第一、三象限.
分別求出符合下列條件的a的取值范圍:
(1)甲、乙 都是真命題;
(2)甲、乙 至少有一個(gè)是真命題.

查看答案和解析>>

同步練習(xí)冊(cè)答案