(1)函數(shù)y=
-2
x
的值域是
 

(2)函數(shù)y=x2+x(-1≤x≤3)的值域是
 
考點:函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:畫出函數(shù)圖象,利用圖象求函數(shù)的值域.
解答: (1)函數(shù)y=
-2
x
,圖象如下圖:

根據(jù)圖象可以看出值域為:(-∞,0)∪(0,+∞).
(2)函數(shù)y=x2+x(-1≤x≤3),圖象如下圖,

當x=-
1
2
時,y=-
1
4
,
函數(shù)y=x2+x(-1≤x≤3)的值域是[-
1
4
,12]
點評:本題考查了數(shù)形結(jié)合的思想,運用函數(shù)的圖象解決函數(shù)值域問題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=
2x+3,x∈(-∞,0)
2x2+1,x∈[0,+∞)
,
(1)求f(0)和f[f(-1)]的值;
(2)畫出函數(shù)草圖;
(3)求使f(x)<2的x值的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

公差不為零的等差數(shù)列{an}的前n項和為Sn.若a4是a3與a7的等比中項,S2=-4,則a1=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知隨機變量ξ~N(μ,σ2),且P(ξ<1)=
1
2
,P(ξ>2)=0.4,則P(0<ξ<1)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線y=x
1
2
與y=x2圍成的封閉區(qū)域的面積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,△ABC是邊長為2的等邊三角形,AA1⊥平面ABC,D,E,I分別是CC1,AB,AA1的中點.
(1)求證:面CEI∥平面A1BD;
(2)若H為A1B上的動點,CH與平面A1AB所成的最大角的正切值為
15
2
,求側(cè)棱AA1的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)y=f(x)在R上有意義,對給定正數(shù)M,定義函數(shù)fM(x)=
f(x),f(x)≤M
M,f(x)>M
,則稱函數(shù)fM(x)為f(x)的“孿生函數(shù)”,若給定函數(shù)f(x)=2-x2,M=1,則y=fM(x)的值域為( 。
A、[1,2]
B、[-1,2]
C、(-∞,2]
D、(-∞,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b是兩條不同的直線,α是一個平面,則下列說法正確的是( 。
A、若a∥b,b?α,則a∥α
B、若a∥α,b?α,則a∥b
C、若a⊥α,b⊥α,則a∥b
D、若a⊥b,b⊥α,則a∥α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若定義在R上的函數(shù)f(x)滿足f(-x)=f(x),f(2-x)=f(x),且當x∈[0,1]時,f(x)=
1-x2
,則函數(shù)H(x)=|xex|-f(x)在區(qū)間[-5,1]上的零點個數(shù)為(  )
A、4B、8C、6D、10

查看答案和解析>>

同步練習冊答案