【題目】如圖所示為一正方體的平面展開(kāi)圖,在這個(gè)正方體中,有下列四個(gè)命題:
①AF⊥GC;
②BD與GC成異面直線且?jiàn)A角為60;
③BD∥MN;
④BG與平面ABCD所成的角為45.
其中正確的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓: 的離心率為,上、下頂點(diǎn)分別為、,點(diǎn)在橢圓上,且異于點(diǎn)、,直線、與直線: 分別交于點(diǎn)、,且面積的最大值為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求線段的長(zhǎng)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) (m,n∈R)在x=1處取得極值2.
(1)求f(x)的解析式;
(2)k為何值時(shí),方程f(x)-k=0只有1個(gè)根
(3)設(shè)函數(shù)g(x)=x2-2ax+a,若對(duì)于任意x1∈R,總存在x2∈[-1,0],使得g(x2)≤f(x1),求a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一矩形硬紙板材料(厚度忽略不計(jì)),一邊長(zhǎng)為6分米,另一邊足夠長(zhǎng).現(xiàn)從中截取矩形(如圖甲所示),再剪去圖中陰影部分,用剩下的部分恰好能折卷成一個(gè)底面是弓形的柱體包裝盒(如圖乙所示,重疊部分忽略不計(jì)),其中是以為圓心、的扇形,且弧,分別與邊, 相切于點(diǎn), .
(1)當(dāng)長(zhǎng)為1分米時(shí),求折卷成的包裝盒的容積;
(2)當(dāng)的長(zhǎng)是多少分米時(shí),折卷成的包裝盒的容積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將圓上每個(gè)點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的4倍,縱坐標(biāo)變?yōu)樵瓉?lái)的3倍,得曲線,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)軸分別交于半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為: ,且直線在直角坐標(biāo)系中與軸分別交于兩點(diǎn).
(1)寫出曲線的參數(shù)方程,直線的普通方程;
(2)問(wèn)在曲線上是否存在點(diǎn),使得的面積,若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l經(jīng)過(guò)點(diǎn)P(2,0),其傾斜角為,在以原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸的極坐標(biāo)系中(取相同的長(zhǎng)度單位),曲線C的極坐標(biāo)方程為.
(Ⅰ)若直線l與曲線C有公共點(diǎn),求傾斜角的取值范圍;
(Ⅱ)設(shè)M(x,y)為曲線C上任意一點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義在上的偶函數(shù).當(dāng)時(shí), .
(1) 求曲線在點(diǎn)處的切線方程;
(2) 若關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知坐標(biāo)平面上動(dòng)點(diǎn)與兩個(gè)定點(diǎn), ,且.
(1)求點(diǎn)的軌跡方程,并說(shuō)明軌跡是什么圖形;
(2)記(1)中軌跡為,過(guò)點(diǎn)的直線被所截得的線段長(zhǎng)度為8,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某花店每天以每枝5元的價(jià)格從農(nóng)場(chǎng)購(gòu)進(jìn)若干枝玫瑰花,然后以每枝10元的價(jià)格出售,如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.
(Ⅰ)若花店一天購(gòu)進(jìn)17枝玫瑰花,求當(dāng)天的利潤(rùn)(單位:元)關(guān)于當(dāng)天需求量(單位:枝, )的函數(shù)解析式.
(Ⅱ)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(1)若花店一天購(gòu)進(jìn)17枝玫瑰花, 表示當(dāng)天的利潤(rùn)(單位:元),求的分布列及數(shù)學(xué)期望;
(2)若花店計(jì)劃一天購(gòu)進(jìn)16枝或17枝玫瑰花,以利潤(rùn)角度看,你認(rèn)為應(yīng)購(gòu)進(jìn)16枝好還是17枝好?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com