15.函數(shù)f(x)=$\left\{{\begin{array}{l}{2cosπx,-1<x<0}\\{{e^{2x-1}},x≥0}\end{array}}$滿足f(${\frac{1}{2}}$)+f(a)=2,則a的所有可能值為( 。
A.$1或-\frac{1}{3}$B.$\frac{1}{2}或1$C.1D.$\frac{1}{2}或-\frac{1}{3}$

分析 利用函數(shù)的解析式,通過討論a的范圍,列出方程求解即可.

解答 解:函數(shù)f(x)=$\left\{{\begin{array}{l}{2cosπx,-1<x<0}\\{{e^{2x-1}},x≥0}\end{array}}$滿足f(${\frac{1}{2}}$)+f(a)=2,
當(dāng)a∈(-1,0)時,可得:${e}^{2×\frac{1}{2}-1}$+2cosaπ=2,
可得cosa$π=\frac{1}{2}$,
解得a=$-\frac{1}{3}$.
當(dāng)a>0時,f(${\frac{1}{2}}$)+f(a)=2,
化為:${e}^{2×\frac{1}{2}-1}$+e2a-1=2,
即e2a-1=1,
解得a=$\frac{1}{2}$.
則a的所有可能值為:$\frac{1}{2}或-\frac{1}{3}$.
故選:D.

點評 本題考查分段函數(shù)的應(yīng)用,函數(shù)零點的個數(shù)的求法,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)全集U={1,2,3,4,5,6,7},A={3,5},B={4,6,7},則(∁UA)∩(∁UB)=( 。
A.{1,2,3}B.{1,2}C.{1,3}D.{2,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)變量X,Y滿足約束條件$\left\{\begin{array}{l}{y≥0}\\{x-y≥0}\\{2x-y-1≤0}\end{array}\right.$,且目標(biāo)函數(shù)Z=$\frac{x}{a}$+$\frac{y}$(1,b為正數(shù))的最大值為1,則a+2b的最小值為( 。
A.3B.6C.4$\sqrt{2}$D.3+2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,體積為$\frac{9}{4}$,底面的邊長都為$\sqrt{3}$,若P為底面A1B1C1的中心,則PA與平面ABC所成角的大小為(  )
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.?dāng)?shù)列{an}滿足:①an<0;②a2•a11=$\frac{8}{27}$;③2an2-anan+1-3an+12=0.
(1)求{an}的通項公式;
(2)設(shè)Tn=|a1•a2•a3…an|,問:是否存在常數(shù)k∈N+,使得Tn≤Tk對于任意n∈N+恒成立?若存在,請求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,某小區(qū)準(zhǔn)備將一塊閑置的直角三角形(其中∠B=$\frac{π}{2}$,AB=a,BV=$\sqrt{3}$a)土地開發(fā)成公共綠地,設(shè)計時,要求綠地部分(圖中陰影部分)有公共綠地走道MN,且兩邊是兩個關(guān)于走道MN對稱的三角形(△AMN和△A′MN),現(xiàn)考慮方便和綠地最大化原則,要求M點與B點不重合,A′點落在邊BC上,設(shè)∠AMN=θ.
(1)若θ=$\frac{π}{3}$,綠地“最美”,求最美綠地的面積;
(2)為方便小區(qū)居民行走,設(shè)計時要求AN,A′N最短,求此時公共綠地走道MN的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知y=m+x和y=nx-1互為反函數(shù),則m=-1,n=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知A是單位圓O上的一個動點,且點A在第一象限.B是圓O與x軸正半軸的交點,記∠AOB=α,若點A在直線4x-3y=0上,求$\frac{si{n}^{2}(α-π)+sin(\frac{3π}{2}+α)}{co{s}^{2}(\frac{5π}{2}+α)+cos(-\frac{3π}{2}+α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.把函數(shù)y=sinx(x∈R)的圖象上所有的點向左平行移動$\frac{π}{6}$個單位長度,再把所得圖象上所有點的橫坐標(biāo)縮短到原來的$\frac{1}{2}$(縱坐標(biāo)不變),得到的圖象所表示的函數(shù)是( 。
A.$y=sin(2x-\frac{π}{6})$,x∈RB.$y=sin(\frac{x}{2}+\frac{π}{12})$,x∈RC.$y=sin(2x+\frac{π}{6})$,x∈RD.$y=sin(2x+\frac{π}{3})$,x∈R

查看答案和解析>>

同步練習(xí)冊答案