A. | $\frac{5π}{12}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
分析 利用三棱柱ABC-A1B1C1的側(cè)棱與底面垂直和線面角的定義可知,∠APA1為PA與平面A1B1C1所成角.利用三棱錐的體積計算公式可得AA1,再利用正三角形的性質(zhì)可得A1P,在Rt△AA1P中,利用tan∠APA1=$\frac{A{A}_{1}}{{A}_{1}P}$,可得結(jié)論.
解答 解:如圖所示,
∵AA1⊥底面A1B1C1,∴∠APA1為PA與平面A1B1C1所成角,
∵平面ABC∥平面A1B1C1,∴∠APA1為PA與平面ABC所成角.
∵${S}_{△{A}_{1}{B}_{1}{C}_{1}}$=$\frac{3\sqrt{3}}{4}$.
∴V三棱柱ABC-A1B1C1=$\frac{3\sqrt{3}}{4}$AA1,解得AA1=$\sqrt{3}$.
又P為底面正三角形A1B1C1的中心,∴A1P=1,
在Rt△AA1P中,tan∠APA1=$\frac{A{A}_{1}}{{A}_{1}P}$=$\sqrt{3}$,
∴∠APA1=60°.
故選B.
點評 本題考查線面角,掌握正三角形的性質(zhì)、線面角的定義是解題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $1或-\frac{1}{3}$ | B. | $\frac{1}{2}或1$ | C. | 1 | D. | $\frac{1}{2}或-\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com