4.若(m-1)+(3m+2)i是純虛數(shù),則實(shí)數(shù)m的值為( 。
A.1B.1或2C.0D.-1、1、2

分析 由已知復(fù)數(shù)為純虛數(shù),得到實(shí)部為0,虛部不為0解得.

解答 解:因?yàn)椋╩-1)+(3m+2)i是純虛數(shù),所以m-1=0且3m+2≠0,解得m=1;
故選A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的基本概念;如果復(fù)數(shù)為純虛數(shù),得到實(shí)部為0,虛部不為0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{1}{3}{x^3}$-4x+4
(1)求函數(shù)的極值;
(2)若函數(shù)f(x)=k有3個(gè)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某電視臺(tái)為宣傳海南,隨機(jī)對(duì)海南15~65歲的人群抽取了n人,回答問題“東環(huán)鐵路沿線有哪幾個(gè)城市?”統(tǒng)計(jì)結(jié)果如圖表所示:
組號(hào)分組回答正確的人數(shù)回答正確的人數(shù)占本組的頻率
第1組[15,25)a0.5
第2組[25,35)18x
第3組[35,45)b0.9
第4組[45,55)90.36
第5組[55,65)3y
(1)分別求出a,b,x,y的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,求第2,3,4組每組各抽取多少人?
(3)在(2)抽取的6人中隨機(jī)抽取2人,求所抽取的人中恰好沒有第3組人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)隨機(jī)變量ξ~N(μ,σ2),函數(shù)f(x)=x2+4x+ξ沒有零點(diǎn)的概率是0.5,則μ等于( 。
A.1B.4C.2D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知a>0,函數(shù)f(x)=ax2+bx+c,若x0滿足關(guān)于x的方程2ax+b=0,則下列選項(xiàng)的命題中為假命題的是(3)
(1)?x∈R,f(x)≤f(x0)        (2)?x∈R,f(x)≥f(x0)    
(3)?x∈R,f(x)≤f(x0)           (4)?x∈R,f(x)≥f(x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在平面直角坐標(biāo)系xOy中,已知直線y=x+2與x軸,y軸分別交于M、N兩點(diǎn),點(diǎn)P在圓(x-a)2+y2=2上運(yùn)動(dòng),若∠MPN恒為銳角,則a的取值范圍是a>$\sqrt{7}-1$或a<-$\sqrt{7}-1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知定圓M:(x+1)2+y2=16,動(dòng)圓N過(guò)點(diǎn)D(1,0),且與圓M相切,記圓心N的軌跡方程為曲線C.
(1)求曲線C的方程;
(2)已知點(diǎn)P(x,y)(x>0)在圓x2+y2=3上,過(guò)點(diǎn)P作圓E的切線l與曲線C交于A,B兩個(gè)不同點(diǎn),求△ABD的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在△ABC中,角A、B、C所對(duì)應(yīng)的邊分別為a,b,c,A=$\frac{π}{3}$,cosB=$\frac{1}{7}$
(1)求sinC的值;
(2)若2c=b+2,求三邊a,b.c的長(zhǎng),并求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知平面向量$\overrightarrow{α}$,$\overrightarrow{β}$滿足|2$\overrightarrow{β}$-$\overrightarrow{α}$|=$\sqrt{3}$,且$\overrightarrow{α}$+$\overrightarrow{β}$與$\overrightarrow{α}$-2$\overrightarrow{β}$的夾角為150°,則|t($\overrightarrow{α}$+$\overrightarrow{β}$)-$\frac{3}{2}$$\overrightarrow{β}$|,(t∈R)的最小值是( 。
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案