【題目】在平面直角坐標(biāo)系中,點(diǎn),分別是橢圓 的左、右焦點(diǎn),過點(diǎn)且與軸垂直的直線與橢圓交于,兩點(diǎn).若為銳角,則該橢圓的離心率的取值范圍是_____
【答案】
【解析】
由題設(shè)知F1(﹣c,0),F2(c,0),A(﹣c,),B(﹣c,),由△是銳角三角形,知tan∠AF1 F2<1,所以1,由此能求出橢圓的離心率e的取值范圍.
解:∵點(diǎn)F1、F2分別是橢圓1(a>b>0)的左、右焦點(diǎn),
過F1且垂直于x軸的直線與橢圓交于A、B兩點(diǎn),
∴F1(﹣c,0),F2(c,0),A(c,),B(c,),
∵△是銳角三角形,
∴∠AF1 F2<45°,∴tan∠AF1 F2<1,
∴1,
整理,得b2<2ac,
∴a2﹣c2<2ac,
兩邊同時除以a2,并整理,得e2+2e﹣1>0,
解得e1,或e1,(舍),
∴0<e<1,
∴橢圓的離心率e的取值范圍是(1,1).
故答案為:(1,1).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知過點(diǎn),圓心C在拋物線上運(yùn)動,若MN為在x軸上截得的弦,設(shè),,
當(dāng)C運(yùn)動時,是否變化?證明你的結(jié)論.
求的最大值,并求出取最大值時值及此時方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左焦點(diǎn)為F,左頂點(diǎn)為A,已知,其中O為坐標(biāo)原點(diǎn),e為橢圓的離心率.
求橢圓C的方程;
是否存在斜率為的直線l,使得當(dāng)直線l與橢圓C有兩個不同交點(diǎn)M,N時,能在直線上找到一點(diǎn)P,在橢圓C上找到一點(diǎn)Q,滿足?若存在,求出直線l的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是定義在R上的函數(shù),對任意的,恒有,且當(dāng)時, .
(1)求的值;
(2)求證:對任意,恒有.
(3)求證:在R上是減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】寫出下列命題的否定,并判斷其真假:
(1)任何有理數(shù)都是實(shí)數(shù);
(2)存在一個實(shí)數(shù),能使成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某建材商場國慶期間搞促銷活動,規(guī)定:如果顧客選購物品的總金額不超過600元,則不享受任何折扣優(yōu)惠;如果顧客選購物品的總金額超過600元,則超過600元部分享受一定的折扣優(yōu)惠,折扣優(yōu)惠按下表累計(jì)計(jì)算.
某人在此商場購物獲得的折扣優(yōu)惠金額為30元,則他實(shí)際所付金額為____元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中, 為自然對數(shù)的底數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時, ,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列滿足, ,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)若表示不超過的最大整數(shù),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】進(jìn)入12月以業(yè),在華北地區(qū)連續(xù)出現(xiàn)兩次重污染天氣的嚴(yán)峻形勢下,我省堅(jiān)持保民生,保藍(lán)天,各地嚴(yán)格落實(shí)機(jī)動車限行等一系列“管控令”,某市交通管理部門為了了解市民對“單雙號限行”的態(tài)度,隨機(jī)采訪了200名市民,將他們的意見和是否擁有私家車的情況進(jìn)行了統(tǒng)計(jì),得到如下的列聯(lián)表:
贊同限行 | 不贊同限行 | 合計(jì) | |
沒有私家車 | 90 | 20 | 110 |
有私家車 | 70 | 40 | 110 |
合計(jì) | 160 | 60 | 220 |
(1)根據(jù)上面的列聯(lián)表判斷能否在犯錯誤的概率不超過的前提下認(rèn)為“對限行的態(tài)度與是否擁有私家車有關(guān)”;
(2)為了了解限行之后是否對交通擁堵、環(huán)境染污起到改善作用,從上述調(diào)查的不贊同限行的人員中按是否擁有私家車分層抽樣抽取6人,再從這6人中隨機(jī)抽出3名進(jìn)行電話回訪,求3人中至少有1人沒有私家車的概率.
附: ,其中.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com