分析 (1)利用余弦定理可得B,再利用和差公式即可得出.
(2)利用正弦定理可得c,再利用三角形面積計算公式即可得出.
解答 解:(1)由a2+c2+$\sqrt{2}$ac=b2,∴cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$-\frac{\sqrt{2}}{2}$.
∵B∈(0,π),∴B=$\frac{3π}{4}$.
∵sinA=$\frac{\sqrt{10}}{10}$,A為銳角,∴cosA=$\sqrt{1-si{n}^{2}A}$=$\frac{3\sqrt{10}}{10}$.
∴sinC=sin$(\frac{3π}{4}+A)$=$\frac{\sqrt{2}}{2}cosA$-$\frac{\sqrt{2}}{2}$sinA=$\frac{\sqrt{2}}{2}(\frac{3\sqrt{10}}{10}-\frac{\sqrt{10}}{10})$=$\frac{\sqrt{5}}{5}$.
(2)由正弦定理得$\frac{a}{sinA}$=$\frac{c}{sinC}$,∴c=$\frac{2×\frac{\sqrt{5}}{5}}{\frac{\sqrt{10}}{10}}$=2$\sqrt{2}$,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}×2×2\sqrt{2}×\frac{\sqrt{2}}{2}$=2.
點評 本題考查了正弦定理余弦定理、和差公式、三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | -2 | C. | -1 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{3}{10}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com