分析 (1)由平面向量數(shù)量積的運算可得f(x)=$\sqrt{2}$sin(2ωx+$\frac{π}{3}$).由題意可得2ωx+$\frac{π}{3}$=2k$π+\frac{π}{2}$,k∈Z,解得:ω=12k+1,k∈Z,結(jié)合范圍0<ω<2,解得ω,即可求得f(x)的解析式. 由2k$π-\frac{π}{2}≤$2x+$\frac{π}{3}$≤2k$π+\frac{π}{2}$,k∈Z,即可解得單調(diào)增區(qū)間.
(2)由$x∈[{\left.{\frac{5π}{24},\frac{2π}{3}}]}$,可得2x+$\frac{π}{3}$∈[$\frac{3π}{4}$,$\frac{5π}{3}$],求得f(x)∈[-$\sqrt{2}$,1],由f(x)≥m恒成立,即可解得m的取值范圍.
解答 (本小題滿分12分)
解:(1)∵f(x)=$\overrightarrow a•\overrightarrow b$+1=$\sqrt{2}$sinωxcosωx+(sinωx+cosωx)($\frac{\sqrt{6}}{2}$cosωx-$\frac{\sqrt{6}}{2}$sinωx)=$\frac{\sqrt{2}}{2}$sin2ωx+$\frac{\sqrt{6}}{2}$cos2ωx=$\sqrt{2}$sin(2ωx+$\frac{π}{3}$).
∵f(x)的圖象關(guān)于直線x=$\frac{π}{12}$對稱,在x=$\frac{π}{12}$處取得最大值.
∴2ωx+$\frac{π}{3}$=2k$π+\frac{π}{2}$,k∈Z,解得:ω=12k+1,k∈Z,
∴由0<ω<2,解得:ω=1,
∴f(x)的解析式是:f(x)=$\sqrt{2}sin(2x+\frac{π}{3})$…(6分)
由2k$π-\frac{π}{2}≤$2x+$\frac{π}{3}$≤2k$π+\frac{π}{2}$,k∈Z,解得單調(diào)增區(qū)間是:$[{\left.{kπ-\frac{5π}{12},kπ+\frac{π}{12}}](k∈z)}\right.$…(8分)
(2)∵$x∈[{\left.{\frac{5π}{24},\frac{2π}{3}}]}$,∴2x+$\frac{π}{3}$∈[$\frac{3π}{4}$,$\frac{5π}{3}$],f(x)∈[-$\sqrt{2}$,1],
∵f(x)≥m恒成立,
∴解得:m$≤-\sqrt{2}$(12分)
點評 本題主要考查了平面向量數(shù)量積的運算,三角函數(shù)恒等變換的應(yīng)用,考查了函數(shù)恒成立問題,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | $\frac{3}{4}$ | C. | 9 | D. | $\frac{9}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ±$\frac{3}{10}$ | B. | $\frac{3}{10}$ | C. | $\frac{3}{\sqrt{10}}$ | D. | ±$\frac{3}{\sqrt{10}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{4}{5}$ | C. | $\frac{5}{6}$ | D. | $\frac{6}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -8 | B. | $-2\sqrt{2}$ | C. | $2\sqrt{2}$ | D. | 8 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com