2.已知圓的極坐標(biāo)方程為ρ=2cosθ,以極點為原點,極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-2\sqrt{2}+t}\\{y=1-t}\end{array}\right.$ (t為參數(shù)),則圓心到直線l的距離為2.

分析 首先把圓的極坐標(biāo)方程轉(zhuǎn)化成直角坐標(biāo)方程,再把參數(shù)方程轉(zhuǎn)換成直角坐標(biāo)方程,最后利用點到直線的距離公式求出結(jié)果.

解答 解:圓的極坐標(biāo)方程為ρ=2cosθ,
轉(zhuǎn)化成直角坐標(biāo)方程為:x2+y2-2x=0,
則:圓心坐標(biāo)為(1,0),
直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-2\sqrt{2}+t}\\{y=1-t}\end{array}\right.$ (t為參數(shù)),
轉(zhuǎn)化成直角坐標(biāo)方程為:x+y+2$\sqrt{2}$-1=0,
則:圓心到直線的距離d=$\frac{|1+2\sqrt{2}-1|}{\sqrt{2}}=2$,
故答案為:2.

點評 本題考查的知識要點:極坐標(biāo)方程與直角坐標(biāo)方程的互化,參數(shù)方程與直角坐標(biāo)方程的互化,點到直線的距離公式的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè){an}是各項均為正數(shù)的等比數(shù)列,Sn為其前n項和,若S4=5S2,則此數(shù)列的公比q的值為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,E為AC上一點,且$\overrightarrow{AC}=4\overrightarrow{AE}$,P為BE上一點,且滿足$\overrightarrow{AP}=m\overrightarrow{AB}+n\overrightarrow{AC}$(m>0,n>0),則當(dāng)$\frac{1}{m}+\frac{1}{n}$取最小值時,向量$\overrightarrow{a}$=(m,n)的模為$\frac{\sqrt{5}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如果關(guān)于x的方程log2(x-a)=log2$\sqrt{4-{x}^{2}}$有實數(shù)解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且f(x)=f′($\frac{π}{6}$)sinx+f′($\frac{π}{3}$)cosx+x,則f′($\frac{π}{3}$)=( 。
A.3-$\sqrt{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.3+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x}(x≥0)}\\{-{x}^{2}+x+1(x<0)}\end{array}\right.$,若方程f(x)-ax=1有三個實根,則實數(shù)a的取值范圍是(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知f(x)=2cos(2x+α)是偶函數(shù),且在[0,$\frac{π}{4}$]上是增函數(shù),求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)F(x)=lnx,f(x)=$\frac{1}{2}$x2+a,a為常數(shù),直線l與函數(shù)F(x)和f(x)的圖象都相切,且l與函數(shù)F(x)的圖象的切點的橫坐標(biāo)是1
(Ⅰ)求直線l的方程和a的值;
(Ⅱ)求證:F(x)≤f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=sin(ωx-$\frac{π}{3}$)(ω>0)圖象的相鄰的兩條對稱軸之間的距離為$\frac{π}{2}$.
(Ⅰ)求函數(shù)f(x)在[0,$\frac{π}{2}$]上的值域;
(Ⅱ)在△ABC中,角A,B,C的對邊分別為a,b,c,已知sinAsinB+sinBsinC+cos2B=1,且f(C)=0,求三邊長之比a:b:c.

查看答案和解析>>

同步練習(xí)冊答案