11.將y=cos(2x+φ)的圖象沿x軸向右平移$\frac{π}{6}$個(gè)單位后,得到一個(gè)奇函數(shù)的圖象,則φ的一個(gè)可能值為(  )
A.$\frac{π}{6}$B.-$\frac{π}{3}$C.-$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)、余弦函數(shù)的奇偶性,求得φ的值.

解答 解:將y=cos(2x+φ)的圖象沿x軸向右平移$\frac{π}{6}$個(gè)單位后,得到一個(gè)奇函數(shù)y=cos[2(x-$\frac{π}{6}$)+φ]=cos(2x+φ-$\frac{π}{3}$)的圖象,
∴φ-$\frac{π}{3}$=kπ+$\frac{π}{2}$,即 φ=kπ+$\frac{5π}{6}$,k∈Z,則φ的一個(gè)可能值為$\frac{5π}{6}$,
故選:D.

點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)、余弦函數(shù)的奇偶性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.不等式$\frac{1}{x-1}$≤$\frac{1}{{x}^{2}-1}$的解集為( 。
A.(-∞,-1)B.[0,1)C.(-∞,-1)∪[0,1)D.(-1,0]∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,O為坐標(biāo)原點(diǎn),P是雙曲線在第一象限上的點(diǎn),$\overrightarrow{MO}$=$\overrightarrow{OP}$,直線PF2交雙曲線C于另一點(diǎn)N,若|PF1|=2|PF2|,且∠MF2N=120°,則雙曲線C的離心率為( 。
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{7}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知定義域?yàn)镽的奇函數(shù)y=f(x)的導(dǎo)函數(shù)為y=f′(x),當(dāng)x≠0時(shí),f′(x)+$\frac{f(x)}{x}$<0,若a=$\frac{1}{3}f(\frac{1}{3})$,b=-3f(-3),c=ln$\frac{1}{3}f(ln\frac{1}{3})$,則a,b,c的大小關(guān)系正確的是( 。
A.a<b<cB.b<c<aC.a<c<bD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,正四棱柱ABCD-A1B1C1D1中,設(shè)AD=1,D1D=λ(λ>0),若棱C1C上存在唯一的一點(diǎn)P滿足A1P⊥PB,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在△ABC中,a=8,b=7,A=45°,則此三角形解的情況是( 。
A.一解B.兩解C.一解或兩解D.無(wú)解

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知△ABC為銳角三角形,命題p:不等式logcosC$\frac{cosA}{sinB}$>0恒成立,命題q:不等式logcosC$\frac{cosA}{cosB}$>0恒成立,則復(fù)合命題p∨q、p∧q、¬p中,真命題的個(gè)數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知$\overrightarrow{OP}$=(2,1),$\overrightarrow{OA}$=(1,7),$\overrightarrow{OB}$=(5,1).設(shè)M是直線OP上的一點(diǎn)(其中O為坐標(biāo)原點(diǎn)),當(dāng)$\overrightarrow{MA}$•$\overrightarrow{MB}$取最小值時(shí):
(1)求$\overrightarrow{OM}$;      
(2)設(shè)∠AMB=θ,求cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.某班新年聯(lián)歡會(huì)原定的4個(gè)節(jié)目已排成節(jié)目單,開(kāi)演前又增加了兩個(gè)新節(jié)目,如果將這兩個(gè)節(jié)目插入原節(jié)目單中,那么不同插法的種數(shù)為(  )
A.42B.30C.20D.12

查看答案和解析>>

同步練習(xí)冊(cè)答案