19.已知定義域?yàn)镽的奇函數(shù)y=f(x)的導(dǎo)函數(shù)為y=f′(x),當(dāng)x≠0時(shí),f′(x)+$\frac{f(x)}{x}$<0,若a=$\frac{1}{3}f(\frac{1}{3})$,b=-3f(-3),c=ln$\frac{1}{3}f(ln\frac{1}{3})$,則a,b,c的大小關(guān)系正確的是(  )
A.a<b<cB.b<c<aC.a<c<bD.c<a<b

分析 根據(jù)式子得出F(x)=xf(x)為R上的偶函數(shù),利用f′(x)+$\frac{f(x)}{x}$>0.
當(dāng)x>0時(shí),x•f′(x)+f(x)>0,
當(dāng)x<0時(shí),x•f′(x)+f(x)<0,判斷單調(diào)性即可證明a,b,c 的大。

解答 解:定義域?yàn)镽的奇函數(shù)y=f(x),
設(shè)F(x)=xf(x),
∴F(x)為R上的偶函數(shù),
∴F′(x)=f(x)+xf′(x)
∵當(dāng)x≠0時(shí),f′(x)+$\frac{f(x)}{x}$>0.
∴當(dāng)x>0時(shí),x•f′(x)+f(x)>0,
當(dāng)x<0時(shí),x•f′(x)+f(x)<0,
即F(x)在(0,+∞)單調(diào)遞增,在(-∞,0)單調(diào)遞減.
F($\frac{1}{3}$)=a=$\frac{1}{3}$f($\frac{1}{3}$)=F(ln$\root{3}{e}$),F(xiàn)(-3)=b=-3f(-3)=F(3),F(xiàn)(ln$\frac{1}{3}$)=c=(ln$\frac{1}{3}$)f(ln$\frac{1}{3}$)=F(ln3),
∵ln$\root{3}{e}$<ln3<3,
∴F(ln$\root{3}{e}$)<F(ln3)<F(3).
即a<c<b,
故選:B.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)在函數(shù)單調(diào)性的運(yùn)用,根據(jù)給出的式子,得出需要的函數(shù),運(yùn)用導(dǎo)數(shù)判斷即可,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.雙曲線C:x2-y2=1的焦點(diǎn)到漸近線的距離等于( 。
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)集合A={y|y=x2-4x+5},集合B={x|x2-1=0},則A∩B=( 。
A.{-1}B.{1}C.{-1,1,5}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.從1,2,3,4中任取兩個(gè)數(shù),則其中一個(gè)數(shù)是另一個(gè)數(shù)兩倍的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知x,y∈R,且$\left\{\begin{array}{l}x+y≤4\\ x-3y≥0\\ y≥0\end{array}$,則存在θ∈R,使得(x-4)cosθ+ysinθ+$\sqrt{2}$=0的概率為(  )
A.$\frac{π}{4}$B.$\frac{π}{8}$C.$2-\frac{π}{4}$D.$1-\frac{π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在長為12cm的線段AB上任取一點(diǎn)C.現(xiàn)作一矩形,鄰邊長分別等于線段AC,CB的長,則該矩形面積大于32cm2的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.將y=cos(2x+φ)的圖象沿x軸向右平移$\frac{π}{6}$個(gè)單位后,得到一個(gè)奇函數(shù)的圖象,則φ的一個(gè)可能值為( 。
A.$\frac{π}{6}$B.-$\frac{π}{3}$C.-$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知圓心在y軸上,半徑為$\sqrt{2}$的圓O位于x軸上側(cè),且與直線x+y=0相切,則圓O的方程是x2+(y-2)2=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)關(guān)于x的實(shí)系數(shù)不等式(ax+3)(x2-b)≤0對(duì)任意x∈[0,+∞)恒成立,則a2b=9.

查看答案和解析>>

同步練習(xí)冊(cè)答案