A. | $x<\frac{21}{2}$ | B. | $-\frac{6}{7}<x<\frac{21}{2}$ | C. | $x<\frac{6}{7}$ | D. | $x<\frac{21}{2}$且$x≠-\frac{6}{7}$ |
分析 利用向量坐標(biāo)的夾角公式求解即可
解答 解:向量$\overrightarrow a=({2,7})$,$\overrightarrow b=({x,-3})$,且$\frac{2}{7}≠\frac{x}{-3}$,即x≠$-\frac{6}{7}$,
$\overrightarrow a$•$\overrightarrow b$=2x-21,
那么:向量$\overrightarrow a$,$\overrightarrow b$夾角的余弦值為$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|•|\overrightarrow|}$<0
即2x-21<0,
解得:x$<\frac{21}{2}$,
∴x$<\frac{21}{2}$且x≠$-\frac{6}{7}$,
故選:D.
點(diǎn)評 本題考查平面向量的數(shù)量積的定義和性質(zhì),考查向量夾角公式及計(jì)算,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x3 | B. | y=2|x| | C. | y=|x+1| | D. | y=x-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | $(\frac{3}{4},+∞)$ | C. | $(0,\frac{3}{4})$ | D. | $(-∞,\frac{3}{4})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,+∞) | B. | (0,$5\sqrt{2}$] | C. | ($5\sqrt{2}$,+∞) | D. | [$5\sqrt{2}$,+∞] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com