分析 利用正弦定理可將已知中的等號兩邊的“邊”轉(zhuǎn)化為它所對角的正弦,再利用 a=b•cosC+c•cosB,b=c•cosA+a•cosC即可判斷該三角形的形狀.
解答 解:根據(jù)正弦定理,原式可變形為:c(cosA+cosB)=a+b…①
∵a=b•cosC+c•cosB,b=c•cosA+a•cosC,
∴a+b=c(cosA+cosB)+cosC(a+b)…②
由于a+b≠0,故由①式、②式得:cosC=0,
∴在△ABC中,∠C=90°.
故答案為:直角.
點(diǎn)評 本題考查正弦定理,考查a=b•cosC+c•cosB,b=c•cosA+a•cosC的應(yīng)用,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,1] | B. | [-1,1] | C. | (0,1) | D. | (-∞,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,0] | B. | [0,4) | C. | (0,4] | D. | [-1,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
日期 | 10月1日 | 10月2日 | 10月3日 | 10月4日 | 10月5日 |
價格x(元) | 9 | 9.5 | 10 | 10.5 | 11 |
銷售量y(萬件) | 11 | 10 | 8 | 6 | 5 |
A. | 14.2元 | B. | 10.8元 | C. | 14.8元 | D. | 10.2元 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 等邊三角形 | B. | 等腰直角三角形 | ||
C. | 直角三角形但不是等腰三角形 | D. | 等腰三角形但不是直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com