【題目】如圖,四棱錐,側(cè)面是邊長為2的正三角形,且平面平面,底面的菱形, 為棱上的動點,且.

(Ⅰ)求證: ;

(Ⅱ)試確定的值,使得二面角的平面角余弦值為.

【答案】(Ⅰ)證明見解析;(Ⅱ) .

【解析】試題分析:

(Ⅰ) 取的中點,連結(jié),可得, ,從而平面,所以,又,所以. (Ⅱ)根據(jù)題意可得兩兩垂直,建立空間直角坐標(biāo)系,求得平面和平面的法向量,根據(jù)法向量的余弦值的絕對值為可求得,從而可得結(jié)論.

試題解析:

(Ⅰ)取的中點,連結(jié),由題意可得 均為正三角形,

所以 ,

,

所以平面,

平面

所以.

因為,

所以.

(Ⅱ)由(Ⅰ)可知.

又平面平面,平面平面, 平面,

所以平面.

故可得兩兩垂直,以為原點,建立如圖所示的空間直角坐標(biāo)系,

, , , ,

所以

,可得點的坐標(biāo)為,

所以 ,

設(shè)平面的一個法向量為,

,可得,

,則,

又平面的一個法向量為,

由題意得,

解得(舍去),

所以當(dāng)時,二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的內(nèi)角A, B, C的對邊分別為a, b, c,.

求角C的大;

Ⅱ)設(shè)角A的平分線交BCD,且AD=,若b=,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】煉鋼是一個氧化降碳的過程鋼水含碳量的多少直接影響冶煉時間的長短,必須掌握鋼水含碳量和冶煉時間的關(guān)系.如果已測得爐料溶化完畢時鋼水的含碳量x與冶煉時間y(從爐料溶化完畢到出鋼的時間)的一組數(shù)據(jù)如表所示:

x(0.01%)

104

180

190

177

147

134

150

191

204

121

y/min

100

200

210

185

155

135

170

205

235

125

(1)yx是否具有線性相關(guān)關(guān)系?

(2)如果yx具有線性相關(guān)關(guān)系,求回歸直線方程.

(3)預(yù)報當(dāng)鋼水含碳量為1600.01%,應(yīng)冶煉多少分鐘?

參考公式:r  ,

線性回歸方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018屆山西省太原十二中高三上學(xué)期1月月考】運動員甲在最近比賽中所得分數(shù)的莖葉圖如圖所示,由于疏忽,莖葉圖中的兩個數(shù)據(jù)上出行了污漬,導(dǎo)致這兩個數(shù)字無法辨認,但統(tǒng)計員記得除掉污漬處的數(shù)字不影響整體中位數(shù),且這六個數(shù)據(jù)的平均值為.

1)求污漬處的數(shù)字;

2)籃球運動員乙在最近的比賽中所得分數(shù)為.試分別以各自場比賽得分的平均數(shù)與方差來分析這兩名籃球運動員的發(fā)揮水平.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,且,.四邊形滿足,,.為側(cè)棱的中點,為側(cè)棱上的任意一點.

(1)若的中點,求證: 面平面;

(2)是否存在點,使得直線與平面垂直? 若存在,寫出證明過程并求出線段的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某花店每天以每枝5元的價格從農(nóng)場購進若干枝玫瑰花,然后以每枝10元的價格出售.如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.

1)若花店一天購進17枝玫瑰花,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式;

2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:

日需求量n

14

15

16

17

18

19

20

頻數(shù)

10

20

16

16

15

13

10

假設(shè)花店在這100天內(nèi)每天購進17枝玫瑰花,求這100天的日利潤(單位:元)的平均數(shù);

若花店一天購進17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤不少于75元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,底面是邊長為2的等邊三角形,平面于點,且平面.

(1)求證:

(2)若四邊形是正方形,且,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù)

(Ⅰ)求不等式的解集;

(Ⅱ)已知函數(shù)的最小值為,若實數(shù),求

最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)求曲線在點處的切線的斜率;

(Ⅱ)判斷方程的導(dǎo)數(shù)在區(qū)間內(nèi)的根的個數(shù),說明理由;

(Ⅲ)若函數(shù)在區(qū)間內(nèi)有且只有一個極值點,的取值范圍

查看答案和解析>>

同步練習(xí)冊答案