【題目】已知點在橢圓上,、分別為的左、右頂點,直線的斜率之積為,為橢圓的右焦點,直線.

1)求橢圓的方程;

2)直線過點且與橢圓交于、兩點,直線分別與直線交于兩點.試問:以為直徑的圓是否過定點?如果是,求出定點坐標(biāo),否則,請說明理由.

【答案】1;(2)過定點,理由見解析.

【解析】

1)利用直線的斜率之積為,得出,再由點在橢圓上,可求出的值,即可得出橢圓的標(biāo)準(zhǔn)方程;

2)由對稱性知,以為直徑的圓過軸上的定點,設(shè)直線的方程為,點,設(shè)點,求出、,將直線的方程與橢圓的方程聯(lián)立,列出韋達定理,求出的值,由,結(jié)合韋達定理求出的值,即可得出定點的坐標(biāo).

1在橢圓上,則,①,

易知點,

直線的斜率為,直線的斜率為

由題意可得,解得,代入①式得

因此,橢圓的方程為

2)易知,直線不能與軸重合.

由對稱性知,以為直徑的圓過軸上的定點

設(shè)直線的方程為,點,設(shè)點,

如下圖所示:

易知點,,即,,

,同理可得.

將直線的方程與橢圓的方程聯(lián)立,

消去得,,.

由韋達定理得,,

,

,

,解得.

因此,以為直徑的圓過定點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為極點,軸的非負(fù)半軸建立極坐標(biāo)系,點的極坐標(biāo),曲線的極坐標(biāo)方程為

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)若為曲線上的動點,求中點到直線的距離最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過雙曲線的右焦點且垂直于軸的直線與雙曲線交于兩點,為虛軸的一個端點,且為鈍角三角形,則此雙曲線離心率的取值范圍為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(1)討論的單調(diào)性;

(2)若有兩個極值點,,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,點,是曲線上的任意一點,動點滿足

1)求點的軌跡方程;

2)經(jīng)過點的動直線與點的軌跡方程交于兩點,在軸上是否存在定點(異于點),使得?若存在,求出的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)有一塊三角形空地,如圖ABC,其中AC=180米,BC=90米,∠C=90°,開發(fā)商計劃在這片空地上進行綠化和修建運動場所,在ABC內(nèi)的P點處有一服務(wù)站(其大小可忽略不計),開發(fā)商打算在AC邊上選一點D,然后過點P和點D畫一分界線與邊AB相交于點E,在ADE區(qū)域內(nèi)綠化,在四邊形BCDE區(qū)域內(nèi)修建運動場所. 現(xiàn)已知點P處的服務(wù)站與AC距離為10米,與BC距離為100. 設(shè)米,試問取何值時,運動場所面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于充分必要條件的判斷中,錯誤的是(

A.的充分條件

B.的必要條件

C.的充要條件

D.,的非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的最大值為,最小值為,則( )

A.存在實數(shù),使

B.存在實數(shù),使

C.對任意實數(shù),有

D.對任意實數(shù),有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1)求的最小正周期;

2)若將函數(shù)圖像向左平移個單位后得到函數(shù)的圖像,求函數(shù)在區(qū)間上的值域;

3)銳角三角形中,若,,求的面積.

查看答案和解析>>

同步練習(xí)冊答案