15.若f(x)在x0處可導,則$lim\frac{{f({x_0}-△x)-f({x_0})}}{△x}$=( 。
A.f(x0B.-f′(x0C.f′(-x0D.不一定存在

分析 利用導數(shù)的定義即可得出.

解答 解:f(x)在x0處可導,則$\underset{lim}{△x→0}$$\frac{f({x}_{0}-△x)-f({x}_{0})}{△x}$=-$\underset{lim}{△x→0}$$\frac{f({x}_{0}-△x)-f({x}_{0})}{-△x}$=-f′(x0
故選:B.

點評 本題考查了導數(shù)的定義,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

5.對于非空集合A,B,設(shè)k(A,B)表示集合A,B中元素個數(shù)差的絕對值,若A={1,2},B={x||x2+ax+1|=1},且k(A,B)=1,由a的所有可能值構(gòu)成的集合是S,則S中所有元素之和為( 。
A.0B.1C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.在2L高產(chǎn)優(yōu)質(zhì)小麥種子中混入了一粒帶白粉病的種子,從中隨機取出10mL,則含有白粉病種子的概率是(  )
A.$\frac{1}{20}$B.$\frac{1}{50}$C.$\frac{1}{100}$D.$\frac{1}{200}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知直線y=x+m與拋物線x2=4y相切,且與x軸的交點為M,點N(-1,0).若動點P與兩定點M,N所構(gòu)成三角形的周長為6.  
(Ⅰ) 求動點P的軌跡C的方程;
 (Ⅱ) 設(shè)斜率為$\frac{1}{2}$的直線l交曲線C于A,B兩點,當PN⊥MN時,證明:∠APN=∠BPN.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.設(shè)△ABC的內(nèi)角A,B,C,所對的邊分別是a,b,c.若a2+b2-c2+ab=0,則角C=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.求下列函數(shù)的導數(shù):
(1)f(x)=(2x2+3)(3x-1)
(2)f(x)=3x•(lnx-x)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.如圖所示,已知A、B、C是一條直路上的三點,AB與BC各等于2km,從三點分別遙望塔M,在A處看見塔在北偏東45°方向,在B處看塔在正東方向,在點C處看見塔在南偏東60°方向,則塔M到直路ABC的最短距離為$\frac{14+10\sqrt{3}}{13}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.下列說法中,所有正確說法的序號是②④.
①終邊落在y軸上的角的集合是{α|α=$\frac{kπ}{2}$,k∈Z};
②函數(shù)y=2cos(x-$\frac{π}{4}$)圖象的一個對稱中心是($\frac{3π}{4}$,0);
③函數(shù)y=tanx在第一象限是增函數(shù);
④已知$f(x)=2asin(2x+\frac{π}{6})-2a+b,(a>0)$,$x∈[\frac{π}{4},\frac{3π}{4}]$,f(x)的值域為$\{y|-3≤y≤\sqrt{3}-1\}$,則a=b=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.對任意兩實數(shù)a、b,定義運算“max{a,b}”如下:max{a,b}=$\left\{\begin{array}{l}{a(a≥b)}\\{b(a<b)}\end{array}\right.$,則關(guān)于函數(shù)f(x)=max{sinx,cosx},下列命題中:
①函數(shù)f(x)的值域為[-$\frac{\sqrt{2}}{2}$,1];         
②函數(shù)f(x)是周期函數(shù);
③函數(shù)f(x)的對稱軸為x=kπ+$\frac{π}{4}(k∈{Z})$;
④當且僅當x=2kπ(k∈Z)時,函數(shù)f(x)取得最大值1;
⑤當且僅當2kπ<x<2kπ+$\frac{3}{2}π(k∈{Z})$時,f(x)<0;
正確的是①②③(填上你認為正確的所有答案)

查看答案和解析>>

同步練習冊答案