【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關,現(xiàn)對30名六年級學生進行了問卷調(diào)查,得到數(shù)據(jù)如表所示(平均每天喝500ml以上為常喝,體重超過50kg為肥胖):
常喝 | 不常喝 | 合計 | |
肥胖 | 2 | 8 | |
不肥胖 | 18 | ||
合計 | 30 |
(Ⅰ)請將上面的列聯(lián)表補充完整;
(Ⅱ)是否有99%的把握認為肥胖與常喝碳酸飲料有關?說明你的理由.
0.050 0.010 | |
3.841 6.635 |
參考數(shù)據(jù):
附:
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐P - ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC
(1)證明平面PAD⊥平面PCD;
(2)求AC與PB所成角的余弦值;
(3)求平面AMC與平面BMC所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(1)證明:PC⊥AD;
(2)求二面角A﹣PC﹣D的正弦值;
(3)設E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設四棱錐P-ABCD的底面不是平行四邊形,用平面去截此四棱錐,使得截面是平行四邊形,則這樣的平面( )
A.不存在
B.有且只有1個
C.恰好有4個
D.有無數(shù)多個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=logm(m>0且m≠1),
(I)判斷f(x)的奇偶性并證明;
(II)若m=,判斷f(x)在(3,+∞)的單調(diào)性(不用證明);
(III)若0<m<1,是否存在β>α>0,使f(x)在[α,β]的值域為[logmm(β-1),logm(α-1)]?若存在,求出此時m的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知m,n是兩條不同直線,,是兩個不同平面,則下列命題正確的是
A.若,垂直于同一平面,則與平行
B.若m,n平行于同一平面,則m與n平行
C.若,不平行,則在內(nèi)不存在與平行的直線
D.若m,n不平行,則m與n不可能垂直于同一平面
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4—4:坐標系與參數(shù)方程
平面直角坐標系xOy中,曲線C:.直線l經(jīng)過點P(m,0),且傾斜角為.O為極點,以x軸正半軸為極軸,建立極坐標系.
(Ⅰ)寫出曲線C的極坐標方程與直線l的參數(shù)方程;
(Ⅱ)若直線l與曲線C相交于A,B兩點,且|PA|·|PB|=1,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面圖形ABB1A1C1C如圖4所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC= ,A1B1=A1C1= .現(xiàn)將該平面圖形分別沿BC和B1C1折疊,使△ABC與△A1B1C1所在平面都與平面BB1C1C垂直,再分別連接A2A,A2B,A2C,得到如圖2所示的空間圖形,對此空間圖形解答下列問題.
(Ⅰ)證明:AA1⊥BC;
(Ⅱ)求AA1的長;
(Ⅲ)求二面角A﹣BC﹣A1的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個盒子內(nèi)裝有8張卡片,每張卡片上面寫著1個數(shù)字,這8個數(shù)字各不相同,且奇數(shù)有3個,偶數(shù)有5個.每張卡片被取出的概率相等.
(Ⅰ)如果從盒子中一次隨機取出2張卡片,并且將取出的2張卡片上的數(shù)字相加得到一個新數(shù),求所得新數(shù)是偶數(shù)的概率;
(Ⅱ)現(xiàn)從盒子中一次隨機取出1張卡片,每次取出的卡片都不放回盒子,若取出的卡片上寫著的數(shù)是偶數(shù)則停止取出卡片,否則繼續(xù)取出卡片.設取出了次才停止取出卡片,求的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com