【題目】設(shè)圓的圓心為A,直線過點(diǎn)B(1,0)且與x軸不重合,設(shè)P為圓A上一點(diǎn),線段PB的垂直平分線交直線PA于E

(1)證明為定值,并寫出E的軌跡方程;

(2)設(shè)點(diǎn)M的軌跡為曲線C1,直線C1M,N兩點(diǎn),問:在軸上是否存在定點(diǎn)D使直線DM與DN的傾斜角互補(bǔ),若存在求出D點(diǎn)的坐標(biāo),否則說明理由。

【答案】(1); (2)存在使直線DM與DN的傾斜角互補(bǔ).

【解析】

(1)由橢圓的定義可判斷出點(diǎn)E的軌跡,進(jìn)而可求出軌跡方程;

(2)先由題意設(shè)直線方程為,與橢圓方程聯(lián)立,由根與系數(shù)關(guān)系,以及直線DM與DN的傾斜角互補(bǔ),即可求出結(jié)果.

(I)∵E為線段PB的垂直平分線上一點(diǎn),∴

>

∴點(diǎn)E的軌跡是以A,B為焦點(diǎn)的橢圓,2a=4.c=1, ∴

E的軌跡方程

(II)由于直線過點(diǎn)B(1,0)且與x軸不重合,所以可設(shè)方程為

聯(lián)立消去x得 ,

設(shè)

,若直線DM與DN的傾斜角互補(bǔ),則

,

所以存在使直線DM與DN的傾斜角互補(bǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知指數(shù)函數(shù)滿足又定義域?yàn)閷?shí)數(shù)集R的函數(shù) 是奇函數(shù)

確定的解析式;

的值;

若對任意的R,不等式恒成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若,則稱的“不動點(diǎn)”;若,則稱的“穩(wěn)定點(diǎn)”.函數(shù)的“不動點(diǎn)”和“穩(wěn)定點(diǎn)”的集合分別記為,即,

)設(shè)函數(shù),求集合

)求證:

)設(shè)函數(shù),且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下判斷正確的是 ( )

A. 函數(shù)上的可導(dǎo)函數(shù),則為函數(shù)極值點(diǎn)的充要條件

B. 若命題為假命題,則命題與命題均為假命題

C. ,則的逆命題為真命題

D. 中,“”是“”的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

已知數(shù)列的前項(xiàng)和,且

)求數(shù)列的通項(xiàng)公式;

)令,是否存在,使得、、成等比數(shù)列.若存在,求出所有符合條件的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】目前,某市出租車的計(jì)價(jià)標(biāo)準(zhǔn)是:路程以內(nèi)(含按起步價(jià)8元收取,超過后的路程按1.9元收取,但超過后的路程需加收的返空費(fèi)(即單價(jià)為

(1)若將乘客搭乘一次出租車的費(fèi)用(單位:元)表示為行程(單位)的分段函數(shù);

(2)某乘客行程為他準(zhǔn)備先乘一輛出租車行駛,然后再換乘另一輛出租車完成余下路程,請問:他這樣做是否比只乘一輛出租車完成全程更省錢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的各項(xiàng)均為正數(shù),其公差為2,a2a4=4a3+1.

(1)求{an}的通項(xiàng)公式;

(2)求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從原點(diǎn)向圓 作兩條切線,切點(diǎn)分別為,,記切線,的斜率分別為

(Ⅰ)若圓心,求兩切線,的方程;

(Ⅱ)若,求圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】攀枝花是一座資源富集的城市,礦產(chǎn)資源儲量巨大,已發(fā)現(xiàn)礦種76種,探明儲量39種,其中釩、鈦資源儲量分別占全國的63%和93%,占全球的11%和35%,因此其素有“釩鈦之都”的美稱.攀枝花市某科研單位在研發(fā)鈦合金產(chǎn)品的過程中發(fā)現(xiàn)了一種新合金材料,由大數(shù)據(jù)測得該產(chǎn)品的性能指標(biāo)值值越大產(chǎn)品的性能越好)與這種新合金材料的含量(單位:克)的關(guān)系為:當(dāng)時(shí),的二次函數(shù);當(dāng)時(shí),.測得部分?jǐn)?shù)據(jù)如下表:

(單位:克)

0

2

6

10

8

8

(Ⅰ)求關(guān)于的函數(shù)關(guān)系式;

(Ⅱ)求該新合金材料的含量為何值時(shí)產(chǎn)品的性能達(dá)到最佳.

查看答案和解析>>

同步練習(xí)冊答案