在數(shù)列{an}中,a3=2,a7=1,且數(shù)列{
1
an+1
}是等差數(shù)列,則a10=
 
考點(diǎn):等差數(shù)列的性質(zhì)
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:利用數(shù)列{
1
an+1
}是等差數(shù)列,
1
a7+1
-
1
a3+1
=4d,代入條件,求出d,即可得出結(jié)論.
解答: 解:∵數(shù)列{
1
an+1
}是等差數(shù)列,
1
a7+1
-
1
a3+1
=4d,
∵a3=2,a7=1,
1
2
-
1
3
=4d,
∴d=
1
24
,
1
a10+1
=
1
a3+1
+7d=
1
3
+
7
24
=
5
8

∴a10=
3
5

故答案為:
3
5
點(diǎn)評(píng):本題考查等差數(shù)列的定義,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)a,b,且a<0<b,則下列不等式成立的是( 。
A、a2<b2
B、
1
a
1
b
C、
1
a-b
1
a
D、
1
ab2
1
a2b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足
x≥1
x-3y+4≤0
3x+5y≤30

(1)求目標(biāo)函數(shù)z=2x-y的最大值和最小值;
(2)求z=
y+5
x+5
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱錐S-ABC,SA=4,AB=6,SO⊥面ABC.
(1)求高SO,斜高SD;
(2)求S-ABC表面積與體積;
(3)求側(cè)棱SA與面ABC所成角的正切值;
(4)求二面角S-BC-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某單位建造一間背面靠墻的倉(cāng)庫(kù),已知倉(cāng)庫(kù)地面面積為27平方米,倉(cāng)庫(kù)正面每平方米的造價(jià)為1500元,倉(cāng)庫(kù)側(cè)面每平方米的造價(jià)為1000元,倉(cāng)庫(kù)頂?shù)脑靸r(jià)為6400元,如果墻高3米,且不計(jì)房屋背面和地面的費(fèi)用,問怎樣設(shè)計(jì)總造價(jià)最低?最低造價(jià)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C對(duì)應(yīng)邊分別是a,b,c,c=2,∠C=
π
3

(1)若sinA=2sinB,求△ABC面積;
(2)若sinC+sin(B-A)=2sin2A,求sinA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,an=11,d=2,Sn=35,則a1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖(1),等腰梯形ABCD中,AD∥BC,AB=AD=2,∠ABC=60°,E是BC的中點(diǎn),將△ABE沿AE折起,得到如圖(2)所示的四棱錐B′-AECD,連結(jié)B′C,B′D,F(xiàn)是CD的中點(diǎn),P是B′C的中點(diǎn),且PF=
6
2


(1)求證:AE⊥平面PEF;
(2)求二面角B′-EF-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M經(jīng)過A(1,-2),B(-1,0)兩點(diǎn),且在兩坐標(biāo)軸上的四個(gè)截距之和是21,求圓M的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案