是否存在實(shí)數(shù)a,b使得關(guān)于n的等式12+22+32+…+n2=
n(an+1)(bn+1)
6
,n∈N*成立?若存在,求出a,b的值并證明等式,若不存在,請(qǐng)說(shuō)明理由.
考點(diǎn):不等式的證明
專題:綜合題,點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:存在a=1,b=2使得關(guān)于n的等式12+22+32+…+n2=
n(an+1)(bn+1)
6
,n∈N*成立.證明時(shí)先證:(1)當(dāng)n=1時(shí)成立.(2)再假設(shè)n=k(k≥1)時(shí),成立,遞推到n=k+1時(shí),成立即可.
解答: 解:存在a=1,b=2使得關(guān)于n的等式12+22+32+…+n2=
n(an+1)(bn+1)
6
,n∈N*成立
證明如下:
①當(dāng)n=1時(shí),等式成立.
②假設(shè)n=k(k∈N*)時(shí)等式成立,
即12+22+32+…k2=
k(k+1)(2k+1)
6
;
當(dāng)n=k+1時(shí),12+22+32+…+(k+1)2=
k(k+1)(2k+1)
6
+(k+1)2=
(k+1)[(k+1)+1][2(k+1)+1]
6

即n=k+1時(shí),等式成立.
因此存在a=1,b=2使得關(guān)于n的等式12+22+32+…+n2=
n(an+1)(bn+1)
6
,n∈N*成立.
點(diǎn)評(píng):本題主要考查研究存在性問(wèn)題和數(shù)學(xué)歸納法,對(duì)存在性問(wèn)題先假設(shè)存在,再證明是否符合條件,數(shù)學(xué)歸納法的關(guān)鍵是遞推環(huán)節(jié),要符合假設(shè)的模型才能成立.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若向量
a
=(1,-1),
b
=(2,-1)則|3
a
-2
b
|=(  )
A、3
2
+
5
B、
5
C、
2
D、3
2
-
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=ax2+bx+c(x∈R)的圖象在x軸上方,且對(duì)稱軸在y軸右側(cè),則函數(shù)y=ax+b的圖象大致是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=lg
2-x
2+x
+
1-2x
1+2x
+a在[-1,1]上有零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,設(shè)Ox,Oy為平面內(nèi)相交成60°角的兩條數(shù)軸,
e1
e2
分別是與x軸、y軸正方向同向的單位向量,若向量
OP
=x
e1
+y
e2
,則把有序?qū)崝?shù)對(duì)(x,y)叫做向量
OP
在坐標(biāo)系xOy中的坐標(biāo).已知P點(diǎn)的坐標(biāo)為(1,1).
(Ⅰ)求|
OP
|;
(Ⅱ)過(guò)點(diǎn)P作直線l分別與x軸、y軸正方向交于點(diǎn)A,B,試確定A,B的位置,使△OAB的面積最小,并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的兩焦點(diǎn)分別為F1,F(xiàn)2,A(-
3
,
1
2
)為橢圓上一點(diǎn),且AF1⊥x軸.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知命題:“已知M是橢圓C上異于左右頂點(diǎn)A1,A2的一點(diǎn),直線MA1,MA2分別交直線l:x=m(m為常數(shù))于不同兩點(diǎn)P,Q,點(diǎn)N在直線l上,若直線MN與橢圓C有且只有一個(gè)公共點(diǎn)M,則N為線段PQ的中點(diǎn)”,試寫(xiě)出此命題的逆命題,判斷所寫(xiě)命題的真假,若為真命題,請(qǐng)你給出證明;若為假命題,請(qǐng)說(shuō)明理由;
(Ⅲ)根據(jù)(Ⅱ)研究的結(jié)果,類似地,請(qǐng)你寫(xiě)出雙曲線中的一個(gè)命題(不需證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2,設(shè)bn=
an
3n
,記數(shù)列{bn}的前n項(xiàng)和為Tn,求Tn的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓心為C的圓(x-1)2+y2=6內(nèi)有點(diǎn)P(2,2),過(guò)點(diǎn)P作直線l交圓C于A,B兩點(diǎn).  
(1)當(dāng)l經(jīng)過(guò)圓心C時(shí),求直線l的方程;
(2)當(dāng)弦AB被點(diǎn)P平分時(shí),求直線l的方程. 
(3)當(dāng)△ACB的面積為
5
時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在R上的奇函數(shù),且x∈[0,+∞)時(shí),f(x)=x(1-x),求f(x)在R上的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案