17.過雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左焦點F(-$\frac{{\sqrt{10}}}{2}$,0)作圓(x-$\frac{{\sqrt{10}}}{2}$)2+y2=1的切線,切點在雙曲線上,則雙曲線的離心率等于( 。
A.2$\sqrt{10}$B.$\sqrt{10}$C.$\frac{{\sqrt{10}}}{3}$D.$\frac{{\sqrt{10}}}{2}$

分析 根據(jù)直線和圓相切的性質(zhì),結(jié)合雙曲線的定義建立方程關(guān)系進行求解即可.

解答 解:由圓的方程(x-$\frac{{\sqrt{10}}}{2}$)2+y2=1知圓心坐標(biāo)為G($\frac{{\sqrt{10}}}{2}$,0),半徑R=1,
∵過左焦點F(-$\frac{{\sqrt{10}}}{2}$,0)作圓(x-$\frac{{\sqrt{10}}}{2}$)2+y2=1的切線,切點在雙曲線上,
∴設(shè)切點為P,
則PG=1,PF=1+2a,F(xiàn)G=2c=$\sqrt{10}$,
則PF2+PG2=FG2,
即(1+2a)2+1=10,
即(1+2a)2=9,得1+2a=3,a=1,c=$\frac{{\sqrt{10}}}{2}$,
∴雙曲線的離心率e=$\frac{c}{a}$=$\frac{{\sqrt{10}}}{2}$,
故選:D.

點評 本題主要考查雙曲線離心率的計算,根據(jù)直線和圓相切的性質(zhì),結(jié)合直角三角形的勾股定理建立方程關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)在x=c處的導(dǎo)數(shù)存在,則“c為函數(shù)f(x)的極值點”是“f′(c)=0”成立的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)=2ln(x+2)-(x+1)2,g(x)=k(x+1).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)k=2時,求證:對于?x>-1,f(x)<g(x)恒成立;
(Ⅲ)若存在x0>-1,使得當(dāng)x∈(-1,x0)時,恒有f(x)>g(x)成立,試求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知f(x)=$\left\{\begin{array}{l}{|x|-1,x>0}\\{si{n}^{2}x,x≤0}\end{array}\right.$,則下列結(jié)論正確的是( 。
A.f(x)為偶函數(shù)B.f(x)為增函數(shù)C.f(x)為周期函數(shù)D.f(x)值域為(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,$\overrightarrow{a}$與$\overrightarrow$的夾角為120°.
(1)求(2$\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$+3$\overrightarrow$)的值;
(2)當(dāng)實數(shù)x為何值時,x$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$+3$\overrightarrow$垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,F(xiàn)1,F(xiàn)2分別是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,經(jīng)過右焦點F2的直線與雙曲線C的右支交于P,Q兩點,且|PF2|=2|F2Q|,PQ⊥F1Q,則雙曲線C的離心率是( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{10}}{2}$D.$\frac{\sqrt{17}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=ax3+bx2+cx+d在O、A兩點處取得極值,其中O是坐標(biāo)原點,A在曲線y=xsinx(x∈[$\frac{π}{3}$,$\frac{2π}{3}$])上,則曲線y=f(x)的切線斜率的最大值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若某流程圖如圖所示,則該程序運行后輸出的結(jié)果是$\frac{9}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=a-$\frac{1}{{{2^x}+1}}$是定義在(-1,1)上的奇函數(shù).
(1)求a的值;
(2)試判斷函數(shù)f(x)在(-1,1)上的單調(diào)性并證明;
(3)若f(x-1)+f(x)<0,求x的取值集合.

查看答案和解析>>

同步練習(xí)冊答案