A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | $2\sqrt{2}$ |
分析 運用向量加減運算和數(shù)量積的性質(zhì),可得$\overrightarrow{PA}•\overrightarrow{PB}$=($\overrightarrow{PO}$+$\overrightarrow{OA}$)•($\overrightarrow{PO}$+$\overrightarrow{OB}$)=|$\overrightarrow{PO}$|2-r2,即為d2-r2,運用點到直線的距離公式,可得d的最小值,進而得到結(jié)論.
解答 解:由$\overrightarrow{PA}•\overrightarrow{PB}$=($\overrightarrow{PO}$+$\overrightarrow{OA}$)•($\overrightarrow{PO}$+$\overrightarrow{OB}$)
=$\overrightarrow{PO}$2+$\overrightarrow{PO}$•($\overrightarrow{OA}$+$\overrightarrow{OB}$)+$\overrightarrow{OA}$•$\overrightarrow{OB}$=|$\overrightarrow{PO}$|2-r2,
即為d2-r2,其中d為圓外點到圓心的距離,r為半徑,
因此當d取最小值時,$\overrightarrow{PA}•\overrightarrow{PB}$的取值最小,
可知d的最小值為$\frac{|1-0+1|}{\sqrt{2}}$=$\sqrt{2}$,
故$\overrightarrow{PA}•\overrightarrow{PB}$的最小值為2-1=1.
故選:A.
點評 本題考查直線與圓的位置關(guān)系以及向量的數(shù)量積的運算,注意運用向量的平方即為模的平方,以及點到直線的距離公式,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
分數(shù)段 | [80,90) | [90,100) | [100,110) | [110,120) | [120,130) | [130,140) |
人數(shù) | 2 | 8 | 30 | 30 | 20 | 10 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a2>b2 | B. | $\frac{a}>1$ | C. | 2a>2b | D. | lg(a-b)>0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | 4 | C. | 4或5 | D. | 5或6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com