已知P,Q為拋物線x2=2y上兩點,點P,Q的橫坐標(biāo)分別為4,-2,過點P,Q分別作拋物線的切線,兩切線交于點A,則點A的坐標(biāo)為
 
考點:拋物線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:通過P,Q的橫坐標(biāo)求出縱坐標(biāo),通過二次函數(shù)的導(dǎo)數(shù),推出切線方程,求出交點的坐標(biāo),即可得到點A的坐標(biāo).
解答: 解:因為點P,Q的橫坐標(biāo)分別為4,-2,
代入拋物線方程得P,Q的縱坐標(biāo)分別為8,2.
由x2=2y,則y=
1
2
x2,所以y′=x,
過點P,Q的拋物線的切線的斜率分別為4,-2,
所以過點P,Q的拋物線的切線方程分別為y=4x-8,y=-2x-2
聯(lián)立方程組解得x=1,y=-4
故點A(1,-4).
故答案為:(1,-4).
點評:本題主要考查利用導(dǎo)數(shù)求切線方程的方法,直線的方程、兩條直線的交點的求法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若命題p的逆命題是q,命題p的逆否命題是r,則q是r的
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,若
OA
=a3
OB
+a2012
OC
,且A,B,C三點共線(該直線不過點O),則S2014=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在區(qū)間(0,
π
2
)上的函數(shù)y=6cosx的圖象與y=5tanx的圖象的交點為P,過點P作PP1⊥x軸于點P1,直線PP1與y=sinx的圖象交于點P2,則線段PP2的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于數(shù)列{an},定義數(shù)列{an+1-an}為數(shù)列{an}的“差數(shù)列”,若a1=1,{an}的“差數(shù)列”的通項公式為an+1-an=2n,則an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3+x2+mx+1在R上無極值點,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)在(0,+∞)上有定義,且對于任意正實數(shù)x、y,都有f(xy)=f(x)+f(y),則f(1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩角和的正切公式經(jīng)過適當(dāng)?shù)淖冃慰苫癁椋簍anα+tanβ+tan(α+β)tanαtanβ=tan(α+β),利用它能較迅速求出某些三角函數(shù)式的值,如tan20°+tan40°+
3
tan20°tan40°=
3
,tan22°+tan23°+tan22°tan23°=1,那么tan78°-tan18°-
3
tan78°tan18°=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各組向量中,可以作為基底的是(  )
A、
e1
=(0,0),
e2
=(1,-2)
B、
e1
=(-1,-2),
e2
=(3,6)
C、
e1
=(3,-5),
e2
=(6,10)
D、
e1
=(2,-3),
e2
=(-2,3)

查看答案和解析>>

同步練習(xí)冊答案