【題目】已知橢圓的一個(gè)頂點(diǎn)為A(0,﹣1),焦點(diǎn)在x軸上.若右焦點(diǎn)到直線x﹣y+2 =0的距離為3.
(1)求橢圓的方程;
(2)設(shè)橢圓與直線y=kx+m(k≠0)相交于不同的兩點(diǎn)M、N.當(dāng)|AM|=|AN|時(shí),求m的取值范圍.

【答案】
(1)解:依題意可設(shè)橢圓方程為

則右焦點(diǎn)F( )由題設(shè)

解得a2=3故所求橢圓的方程為 ;


(2)解:設(shè)P為弦MN的中點(diǎn),由

得(3k2+1)x2+6mkx+3(m2﹣1)=0

由于直線與橢圓有兩個(gè)交點(diǎn),∴△>0,即m2<3k2+1①

從而

又|AM|=||AN|,∴AP⊥MN,

即2m=3k2+1②

把②代入①得2m>m2解得0<m<2由②得 解得

故所求m的取范圍是( ).


【解析】(1)依題意可設(shè)橢圓方程為 ,由題設(shè) 解得a2=3,故所求橢圓的方程為 .(2)設(shè)P為弦MN的中點(diǎn),由 得(3k2+1)x2+6mkx+3(m2﹣1)=0,由于直線與橢圓有兩個(gè)交點(diǎn),∴△>0,即m2<3k2+1.由此可推導(dǎo)出m的取值范圍.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識(shí),掌握橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等式ax2+bx+3>0的解集為(﹣1,3).
(1)求實(shí)數(shù)a,b的值;
(2)解不等式x2+a|x﹣2|﹣8<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系xOy中,A(2,4),B(﹣1,2),C,D為動(dòng)點(diǎn),
(1)若C(3,1),求平行四邊形ABCD的兩條對(duì)角線的長度
(2)若C(a,b),且 ,求 取得最小值時(shí)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖的程序框圖表示的算法中,輸入三個(gè)實(shí)數(shù)a,b,c,要求輸出的x是這三個(gè)數(shù)中最大的數(shù),那么在空白的判斷框中,應(yīng)該填入(

A.x>c
B.c>x
C.c>b
D.c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}和等比數(shù)列{bn},其中{an}的公差不為0.設(shè)Sn是數(shù)列{an}的前n項(xiàng)和.若a1 , a2 , a5是數(shù)列{bn}的前3項(xiàng),且S4=16.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)若數(shù)列{ }為等差數(shù)列,求實(shí)數(shù)t;
(3)構(gòu)造數(shù)列a1 , b1 , a2 , b1 , b2 , a3 , b1 , b2 , b3 , …,ak , b1 , b2 , …,bk , …,若該數(shù)列前n項(xiàng)和Tn=1821,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1的左右焦點(diǎn)分別為F1 , F2 , 則在橢圓C上滿足∠F1PF2= 的點(diǎn)P的個(gè)數(shù)有(
A.0個(gè)
B.1個(gè)
C.2 個(gè)
D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在長方體ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中點(diǎn).

(1)證明:B1M⊥平面ABM;
(2)求異面直線A1M和C1D1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)(1, )是函數(shù)f(x)= ax(a>0,a≠1)圖象上一點(diǎn),等比數(shù)列{an}的前n項(xiàng)和為c﹣f(n).?dāng)?shù)列{bn}(bn>0)的首項(xiàng)為2c,前n項(xiàng)和滿足 = +1(n≥2). (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{ }的前n項(xiàng)和為Tn , 問使Tn 的最小正整數(shù)n是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐 中,底面ABCD是直角梯形, , ,平面 底面ABCD, O為AD的中點(diǎn), M是棱PC上的點(diǎn), AD=2AB.

(1)求證:平面 平面PAD;
(2)若 平面BMO,求 的值.

查看答案和解析>>

同步練習(xí)冊答案