9.已知y=x2-(3m+1)x+2m2+2m.
(1)當(dāng)m=2時(shí)求關(guān)于x的不等式y(tǒng)<0的解集
(2)求關(guān)于x的不等式y(tǒng)<0的解集;
(3)若y<0在區(qū)間[0,$\frac{1}{2}$]上恒成立,求實(shí)數(shù)m得取值范圍.

分析 (1)代入m,解不等式即可;
(2)因式分解,對(duì)參數(shù)m進(jìn)行分類討論;
(3)利用(2)的結(jié)論,可得出m<1,結(jié)合題意,得出m的范圍.

解答 解:(1)當(dāng)m=2時(shí),
y=x2-7x+12<0,
∴不等式的解集為(3,4);
(2)x2-(3m+1)x+2m2+2m
=(x-2m)(x-m-1)<0,
當(dāng)2m>m+1,即m>1時(shí),解集為(m+1,2m);
當(dāng)2m<m+1,即m<1時(shí),解集為(2m,m+1),
當(dāng)m=1,無解.
(3)由(2)可知,當(dāng)m>1時(shí),顯然不成立,
當(dāng)m<1時(shí),y<0的解集為(2m,m+1),
要使在區(qū)間[0,$\frac{1}{2}$]上恒成立,
∴2m<0,m+1>$\frac{1}{2}$,
∴-$\frac{1}{2}$<m<0.

點(diǎn)評(píng) 考查了利用因式分解求二次不等式和參數(shù)的分類討論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x+3,x<0}\\{-{x}^{2}+2x+a,x>0}\end{array}\right.$是奇函數(shù),則a=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)y=|1-2x|+|x+1|的最小值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)y=$\sqrt{1-{x}^{2}}$的值域是( 。
A.(2,3)B.[0,1]C.[0,+∞)D.(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.關(guān)于x的不等式ax2+bx+c<0的解為:x<2或x>3,則不等式cx2+bx+a>0的解為$(\frac{1}{3},\frac{1}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.A={3,10},B={1,8},對(duì)于任意x∈A,x→ax+b表示從集合A到集合B的函數(shù),求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且b>c,已知$\overrightarrow{AB}$•$\overrightarrow{AC}$=2,cosA=$\frac{1}{3}$,a=3.求:
(1)b和c的值
(2)cos(A-C)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.利用集合運(yùn)算,使下列任意兩個(gè)集合的運(yùn)算結(jié)果分別為:(1)非空集合;(2)空集;(3)R.如果結(jié)果是非空集合,請(qǐng)求出它的解集.
集合A={x|x≤1},集合B={x|x≥0},集合C={x|3≤x≤5}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)f(x)=(x2-$\frac{3}{m}$x+$\frac{5}{{m}^{2}}$)emx,其中實(shí)數(shù)m≠0.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若g(x)=f(x)-$\frac{2}{m}$x-5恰有兩個(gè)零點(diǎn),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案