過(guò)原點(diǎn)作動(dòng)直線l與直線:x+y=4交于點(diǎn)P,在直線l上取點(diǎn)Q,使|OP|·|OQ|=8,求點(diǎn)Q的軌跡方程.

答案:
解析:

解:以原點(diǎn)為極點(diǎn),x軸的正半軸Ox為極軸建立極坐標(biāo)系,則的極坐標(biāo)方程為ρcosθ+ρsinθ=4,設(shè)Q(ρ,θ),則P(,θ)(點(diǎn)Q在射線OP上)或P(,θ-π)(點(diǎn)Q在OP的反向延長(zhǎng)線上),∴cosθ+sinθ=4或cos(θ-π)+sin(θ-π)=4,即ρ=2cosθ+2sinθ或ρ=-2cosθ-2sinθ.∴點(diǎn)Q的軌跡的直角坐標(biāo)方程為+2x+2y=0(去掉點(diǎn)(0,0))或+2x+2y=0(去掉點(diǎn)(0,0)).

說(shuō)明:本題是極坐標(biāo)法在求軌跡中的應(yīng)用,顯然優(yōu)于直接在直角坐標(biāo)系中求解.1995年高考理科數(shù)學(xué)卷最后一題,若用極坐標(biāo)法解,就比較簡(jiǎn)單.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•泉州模擬)已知橢圓C的對(duì)稱中心為坐標(biāo)原點(diǎn),上焦點(diǎn)為F(0,1),離心率e=
12

(Ⅰ)求橢圓C的方程;    
(Ⅱ)設(shè)A(m,0)(m>0)為x軸上的動(dòng)點(diǎn),過(guò)點(diǎn)A作直線l與直線AF垂直,試探究直線l與橢圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•成都二模)已知過(guò)原點(diǎn)的動(dòng)圓c與直線l:x-y-4=0相切,且當(dāng)動(dòng)圓C面積最小時(shí),圓的方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•上海模擬)設(shè)向量
s
=(x+1,y),
t
=(y,x-1)(x,y∈R)
,滿足|
s
|+|
t
 |=2
2
,已知兩定點(diǎn)A(1,0),B(-1,0),動(dòng)點(diǎn)P(x,y),
(1)求動(dòng)點(diǎn)P(x,y)的軌跡C的方程;
(2)已知直線m:y=x+t交軌跡C于兩點(diǎn)M,N,(A,B在直線MN兩側(cè)),求四邊形MANB的面積的最大值.
(3)過(guò)原點(diǎn)O作直線l與直線x=2交于D點(diǎn),過(guò)點(diǎn)A作OD的垂線與以O(shè)D為直徑的圓交于點(diǎn)G,H(不妨設(shè)點(diǎn)G在直線OD上方),求證:線段OG的長(zhǎng)為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知過(guò)原點(diǎn)的動(dòng)圓c與直線l:x-y-4=0相切,且當(dāng)動(dòng)圓C面積最小時(shí),圓的方程是


  1. A.
    (x-1)2+(y+1)2=4
  2. B.
    (x-1)2+(y+1)2=2
  3. C.
    (x+1)2+(y-1)2=4
  4. D.
    (x+1)2+(y-1)2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年四川省成都市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:選擇題

已知過(guò)原點(diǎn)的動(dòng)圓c與直線l:x-y-4=0相切,且當(dāng)動(dòng)圓C面積最小時(shí),圓的方程是( )
A.(x-1)2+(y+1)2=4
B.(x-1)2+(y+1)2=2
C.(x+1)2+(y-1)2=4
D.(x+1)2+(y-1)2=2

查看答案和解析>>

同步練習(xí)冊(cè)答案