9.設(shè)隨機變量ξ~B(2,p),η~B(3,p),若P(ξ≥1)=$\frac{5}{9}$,則P(η≥2)的值為( 。
A.$\frac{20}{27}$B.$\frac{8}{27}$C.$\frac{7}{27}$D.$\frac{1}{27}$

分析 先根據(jù)變量ξ~B(2,p),且P(ξ≥1)=1-P(ξ<1)=$\frac{5}{9}$,求出p的值,然后根據(jù)P(η≥2)=1-P(η=0)-P(η=1)求出所求.

解答 解:∵變量ξ~B(2,p),且P(ξ≥1)=$\frac{5}{9}$,
∴P(ξ≥1)=1-P(ξ<1)=1-C20•(1-p)2=$\frac{5}{9}$,
∴p=$\frac{1}{3}$,
∴P(η≥2)=1-P(η=0)-P(η=1)=1-C30( $\frac{1}{3}$)0( $\frac{2}{3}$)3 -${C}_{3}^{1}$•$\frac{1}{3}$•${(\frac{2}{3})}^{2}$=1-$\frac{8}{27}$-$\frac{12}{27}$=$\frac{7}{27}$,
故選:C.

點評 本題主要考查了二項分布與n次獨立重復試驗的模型,解題的關(guān)鍵就是求p的值,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,已知A是△BCD所在平面外一點,∠ABD=∠ACD=90°,AB=AC,E是BC的中點,求證:AD⊥BC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.如圖,課桌上放著一個圓錐SO,點A為圓錐底面圓周上一點,SA=2cm,OA=1cm,螞蟻從點A沿圓錐的側(cè)面爬行一周再回到A,則螞蟻行跡的最短路程是( 。
A.2πcmB.2$\sqrt{2}$cmC.4$\sqrt{2}$cmD.4cm

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=lnx+$\frac{a}{x}$-2.
(1)討論f(x)的單調(diào)性;
(2)若函數(shù)y=f(x)的兩個零點x1,x2(x1<x2),證明:x1+x2>2a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知A、B、D三點共線,存在點C,滿足$\overrightarrow{CD}$=$\frac{4}{3}$$\overrightarrow{CA}$-λ$\overrightarrow{CB}$,則λ=( 。
A.$\frac{2}{3}$B.$\frac{1}{3}$C.-$\frac{1}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.如圖,已知AD∥BE∥CF,下列比例式成立的是( 。
 
A.$\frac{AB}{DE}=\frac{AD}{BE}$B.$\frac{BC}{AC}=\frac{EF}{DF}$C.$\frac{AC}{AB}=\frac{DF}{EF}$D.$\frac{AB}{EF}=\frac{DE}{BC}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.經(jīng)過點M(1,5)且傾斜角為$\frac{2π}{3}$的直線的參數(shù)方程是( 。
A.$\left\{{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=5+\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$B.$\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{3}}}{2}t}\\{y=5+\frac{1}{2}t}\end{array}}\right.$C.$\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{3}}}{2}t}\\{y=5-\frac{1}{2}t}\end{array}}\right.$D.$\left\{{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=5-\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若2弧度的圓心角所對的弧長為2cm,則這個圓心角所夾的扇形的面積是1cm2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.正項等比數(shù)列{an}中,a3=2,a4•a6=64,則$\frac{{{a_5}+{a_6}}}{{{a_1}+{a_2}}}$的值是( 。
A.4B.8C.16D.64

查看答案和解析>>

同步練習冊答案