【題目】如圖,在四棱錐中,平面平面,且,四邊形滿足,為側(cè)棱上的任意一點.

1)求證:平面平面.

2)是否存在點,使得直線與平面垂直?若存在,寫出證明過程并求出線段的長;若不存在,請說明理由.

【答案】1)證明見解析(2)存在點,證明見解析;線段的長為

【解析】

1)由平面平面,易得平面,所以,又,根據(jù)線面垂直的判定定理,得平面,再由面面垂直的判定定理,得平面平面.

2)這是一個探索性問題,將問題倒推來分析,若有直線與平面垂直,根據(jù)點F,即證使的位置.

1)∵平面平面,平面平面,

平面.

平面,又平面,

.

,

平面,又平面

∴平面平面.

2)存在點,當(dāng)時,直線與平面垂直.

證明如下:

,

.

平面,

,

,

平面,又平面,

.

,

平面.

中,,

.

∴存在點,使得直線與平面垂直.此時線段的長為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C,O為坐標(biāo)原點,FC的右焦點,過F的直線與C的兩條漸近線的交點分別為M、N.OMN為直角三角形,則|MN|=

A. B. 3 C. D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),

1)若關(guān)于的不等式的解集為,求實數(shù)的值;

2)求不等式的解集;

3)若對于恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知斜三棱柱的棱長都是,側(cè)棱與底面成60°角,側(cè)面底面.

1)求證:

2)求平面與平面所成的銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱臺中,底面,四邊形為菱形,,.

(1)若中點,求證:平面

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)判斷的單調(diào)性;

(2)若函數(shù)存在極值,求這些極值的和的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出如下四個命題:①若“”為假命題,則均為假命題;②命題“若,則”的否命題為“若,則”; ③“,則”的否定是“,則”;④在中,“”是“”的充要條件.其中正確的命題的個數(shù)是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若是函數(shù)的一個極值點,求實數(shù)的值;

(2)討論函數(shù)的單調(diào)性.

(3)若對于任意的,當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量=(2sin x,cos x),=(-sin x,2sin x),函數(shù)fx)=·

1)求fx)的單調(diào)遞增區(qū)間;

2)在△ABC中,a,b,c分別是角AB,C的對邊,且fC)=1,c1,ab2,且a>b,求ab的值.

查看答案和解析>>

同步練習(xí)冊答案