16.過圓O外一點(diǎn)P,作圓的切線PA、PB,A、B為切點(diǎn),M為弦AB上一點(diǎn),過M作直線分別交PA、PB于點(diǎn)C、D.
(Ⅰ)若BD=2,AC=3,MC=4,求線段MD的長;
(Ⅱ)若MO⊥CD,求證:MD=MC.

分析 (Ⅰ)過點(diǎn)C作CE∥PD交AB于點(diǎn)E,運(yùn)用兩直線平行的性質(zhì)定理和相似三角形的判定和性質(zhì),結(jié)合圓的切線的性質(zhì):切線長相等,即可求得MD;
(Ⅱ)連接OA、OB、OC、OD,運(yùn)用切線的性質(zhì),證得四點(diǎn)A、C、M、O共圓,四點(diǎn)B、D、O、M共圓,可得同弧所對(duì)的圓周角相等,再由等腰三角形的三線合一,即可得證.

解答 解:(Ⅰ)如圖1,
過點(diǎn)C作CE∥PD交AB于點(diǎn)E,
則∠PBA=∠CEA,
且△MCE∽△MDB,
所以$\frac{MC}{MD}=\frac{EC}{BD}$.
因?yàn)镻A、PB是圓的切線,
所以∠PAB=∠PBA,
所以∠PAB=∠CEA,
從而$AC=EC,\frac{MC}{MD}=\frac{AC}{BD}$,
得$MD=\frac{MC}{AC}•BD$=$\frac{4×2}{3}$=$\frac{8}{3}$;
證明:(Ⅱ)如圖2,連接OA、OB、OC、OD,
則OA⊥PA,OB⊥PB.
因?yàn)镸O⊥CD,所以∠OMD=∠OBD=∠OMC=∠OAC=90°,
故四點(diǎn)A、C、M、O共圓,四點(diǎn)B、D、O、M共圓,
所以∠OCM=∠OAM,∠ODM=∠OBM.
又OA=OB,
所以∠OAM=∠OBM,
故∠OCM=∠ODM,OC=OD.
從而MD=MC.

點(diǎn)評(píng) 本題考查相似三角形的判定和性質(zhì)定理的運(yùn)用,考查四點(diǎn)共圓的判定和圓的切線的性質(zhì)及同弧所對(duì)圓周角相等,考查推理能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{-x-2(x≤-1)}\\{-1(-1<x<1)}\\{x-2(x≥1)}\end{array}\right.$
(1)畫出函數(shù)f(x)的圖象并求f(2)+f(0)+f(-2)的值;
(2)若f(x)=3,求x的值;
(3)若f(x)≥2,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖,將函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位,得到函數(shù)g(x)的圖象,則關(guān)于函數(shù)g(x):
①函數(shù)在區(qū)間[$\frac{π}{6}$,$\frac{π}{2}$]上遞減;②函數(shù)圖象關(guān)于x=$\frac{π}{4}$對(duì)稱;③函數(shù)在區(qū)間[$\frac{π}{6}$,$\frac{2π}{3}$]上值域?yàn)閇-2,1];④函數(shù)圖象的一個(gè)對(duì)稱中心為($\frac{π}{4}$,0),以上說法正確的是(  )
A.①③B.②③C.①②③D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知復(fù)數(shù)z滿足z=i(1+z),則在復(fù)平面內(nèi)z對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(m,1),若向量$\overrightarrow{a}$在$\overrightarrow$方向上的投影長為1,則m=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知全集U={1,2,3,4,5},M={3,4,5},N={1,2,5},則集合{1,2}可表示為( 。
A.M∩NB.(∁UM)∩NC.M∩(∁UN)D.(∁UM)∪(∁UN)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.等比數(shù)列{an}中,an>0,a3+2a2=a4,則數(shù)列{an}的公比為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,直三棱柱ABC-A1B1C1中,AC=BC,四邊形ABB1A1是邊長為1的正方形,若E,F(xiàn)分別是CB1,BA1的中點(diǎn).
(1)求證:EF∥平面ABC;
(2)若AC⊥CB1,求幾何體BCA1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=lnx-a(x-1)(其中a>0,e是自然對(duì)數(shù)的底數(shù)).
(Ⅰ)若關(guān)于x的方程f(x)=$\frac{1}{2}$x2-$\frac{1}{a}$x+a有唯一實(shí)根,求(1+lna)a2的值;
(Ⅱ)若過原點(diǎn)作曲線y=f(x)的切線l與直線y=-ex+1垂直,證明:$\frac{e-1}{e}$<a<$\frac{{e}^{2}-1}{e}$;
(Ⅲ)設(shè)g(x)=f(x+1)+ex,當(dāng)x≥0時(shí),g(x)≥1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案