4.已知f(x)是R上的奇函數(shù),且f(1)=3,f(x+3)=f(x),則f(8)=( 。
A.3B.-3C.8D.-8

分析 利用函數(shù)周期性和奇偶性的關(guān)系進(jìn)行轉(zhuǎn)化求解即可.

解答 解:由f(x+3)=f(x),得函數(shù)是周期為3的周期函數(shù),
則f(8)=f(8-9)=f(-1),
∵f(x)是R上的奇函數(shù),且f(1)=3,
∴f(8)=f(-1)=-f(1)=-3,
故選:B

點(diǎn)評(píng) 本題主要考查函數(shù)值的計(jì)算,根據(jù)條件判斷函數(shù)的周期性,利用函數(shù)周期性和奇偶性的關(guān)系進(jìn)行轉(zhuǎn)化求解即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,則橢圓的焦距與短軸長(zhǎng)之比為( 。
A.$\frac{1}{3}$B.$\frac{\sqrt{3}}{3}$C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=(2-a)lnx+$\frac{1}{x}$+2ax.
(Ⅰ)當(dāng)a=2時(shí),求函數(shù)f(x)的極值;
(Ⅱ)當(dāng)a<0時(shí),討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.D為△ABC邊BC中點(diǎn),點(diǎn)P滿足$\overrightarrow{BP}$+$\overrightarrow{CP}$+$\overrightarrow{PA}$=$\overrightarrow{0}$,$\overrightarrow{AP}$=λ$\overrightarrow{PD}$,實(shí)數(shù)λ為( 。
A.$\frac{1}{4}$B.2C.-2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖是函數(shù)$f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<\frac{π}{2})$的圖象的一部分.
(1)求函數(shù)y=f(x)的解析式.
(2)若$f(α+\frac{π}{12})=\frac{3}{2},α∈[\frac{π}{2},π],求tan2α$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若直線y=x+a與曲線f(x)=x•lnx+b相切,其中a、b∈R,則b-a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)$f(x)=lg\frac{2-x}{2+x}$,若f(m+1)<-f(-1),則實(shí)數(shù)m的取值范圍是( 。
A.(0,+∞)B.(-1,0)C.(0,1)D.(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知直角梯形ABCD中,AB∥CD,∠A=$\frac{π}{2}$,AD=1,AB=2CD=4,E為AB中點(diǎn),沿線段DE將△ADE折起到△A1DE,使得點(diǎn)A1在平面EBCD上的射影H在直線CD上.
(Ⅰ)求證:平面A1EC⊥平面A1DC;
(Ⅱ)求直線A1B與平面EBCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}中,a1=1,其前n項(xiàng)的和為Sn,且滿足an=$\frac{{2{S_n}^2}}{{2{S_n}-1}}$(n≥2)
(Ⅰ)證明:數(shù)列$\left\{{\frac{1}{S_n}}\right\}$是等差數(shù)列;
(Ⅱ)證明:$\frac{1}{3}{S_1}+\frac{1}{5}{S_2}+\frac{1}{7}{S_3}+…+\frac{1}{2n+1}{S_n}<\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案