【題目】已知拋物線C的頂點(diǎn)為原點(diǎn),其焦點(diǎn)F(0,c)(c>0)到直線l:x﹣y﹣2=0的距離為 ,設(shè)P為直線l上的點(diǎn),過點(diǎn)P作拋物線C的兩條切線PA,PB,其中A,B為切點(diǎn).
(1)求拋物線C的方程;
(2)當(dāng)點(diǎn)P(x0 , y0)為直線l上的定點(diǎn)時,求直線AB的方程;
(3)當(dāng)點(diǎn)P在直線l上移動時,求|AF||BF|的最小值.
【答案】
(1)解:焦點(diǎn)F(0,c)(c>0)到直線l:x﹣y﹣2=0的距離 ,解得c=1,
所以拋物線C的方程為x2=4y.
(2)解:設(shè) , ,
由(1)得拋物線C的方程為 , ,所以切線PA,PB的斜率分別為 , ,
所以PA: ①PB: ②
聯(lián)立①②可得點(diǎn)P的坐標(biāo)為 ,即 , ,
又因為切線PA的斜率為 ,整理得 ,
直線AB的斜率 ,
所以直線AB的方程為 ,
整理得 ,即 ,
因為點(diǎn)P(x0,y0)為直線l:x﹣y﹣2=0上的點(diǎn),所以x0﹣y0﹣2=0,即y0=x0﹣2,
所以直線AB的方程為x0x﹣2y﹣2y0=0.
(3)解:根據(jù)拋物線的定義,有 , ,
所以 = ,
由(2)得x1+x2=2x0,x1x2=4y0,x0=y0+2,
所以 = .
所以當(dāng) 時,|AF||BF|的最小值為
【解析】(1)利用焦點(diǎn)到直線l:x﹣y﹣2=0的距離建立關(guān)于變量c的方程,即可解得c,從而得出拋物線C的方程;(2)先設(shè) , ,由(1)得到拋物線C的方程求導(dǎo)數(shù),得到切線PA,PB的斜率,最后利用直線AB的斜率的不同表示形式,即可得出直線AB的方程;(3)根據(jù)拋物線的定義,有 , ,從而表示出|AF||BF|,再由(2)得x1+x2=2x0 , x1x2=4y0 , x0=y0+2,將它表示成關(guān)于y0的二次函數(shù)的形式,從而即可求出|AF||BF|的最小值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了了解該校學(xué)生對于某項運(yùn)動的愛好是否與性別有關(guān),通過隨機(jī)抽查110名學(xué)生,得到如下的列聯(lián)表:
喜歡該項運(yùn)動 | 不喜歡該項運(yùn)動 | 總計 | |
男 | 40 | 20 | 60 |
女 | 20 | 30 | 50 |
總計 | 60 | 50 | 110 |
由公式,算得
附表:
0.025 | 0.01 | 0.005 | |
5.024 | 6.635 | 7.879 |
參照附表,以下結(jié)論正確的是( )
A. 在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項運(yùn)動與性別有關(guān)”
B. 在犯錯語的概率不超過0.1%的前提下,認(rèn)為“愛好該項運(yùn)動與性別有關(guān)”
C. 有99%以上的把握認(rèn)為“愛好該項運(yùn)動與性別無關(guān)”
D. 有99%以上的把握認(rèn)為“愛好該項運(yùn)動與性別有關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在底面為矩形的四棱錐中,,,且,其中分別是線段的中點(diǎn)。
(1)證明:平面
(2)證明:平面
(3)求:直線與平面所成角的正弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(坐標(biāo)系與參數(shù)方程選做題)
已知曲線C的參數(shù)方程為 (t為參數(shù)),C在點(diǎn)(1,1)處的切線為l,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,則l的極坐標(biāo)方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知六棱錐的底面是正六邊形,平面,,給出下列結(jié)論:
①;
②直線平面;
③平面平面;
④異面直線與所成角為;
⑤直線與平面所成角的余弦值為.
其中正確的有_______(把所有正確的序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中.
(Ⅰ)當(dāng)時,求函數(shù)的極值;
(Ⅱ)當(dāng)時,證明:函數(shù)不可能存在兩個零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD與正三角形BCE的邊長均為2,且平面ABCD⊥平面BCE,平面ABCD,.
(I)求證:平面ABCD;
(II)求證:平面ACF⊥平面BDF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對某種書籍每冊的成本費(fèi)(元)與印刷冊數(shù)(千冊)的數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計量的值.
4.83 | 4.22 | 0.3775 | 60.17 | 0.60 | -39.38 | 4.8 |
表中,.
為了預(yù)測印刷20千冊時每冊的成本費(fèi),建立了兩個回歸模型:,.
(1)根據(jù)散點(diǎn)圖,你認(rèn)為選擇哪個模型預(yù)測更可靠?(只選出模型即可)
(2)根據(jù)所給數(shù)據(jù)和(1)中選擇的模型,求關(guān)于的回歸方程,并預(yù)測印刷20千冊時每冊的成本費(fèi).
附:對于一組數(shù)據(jù),,…,,其回歸方程的斜率和截距的最小二乘估計公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績和物理成績之間的關(guān)系,隨機(jī)抽取高二年級20名學(xué)生某次考試成績(百分制)如下表所示:
序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
數(shù)學(xué)成績 | 95 | 75 | 80 | 94 | 92 | 65 | 67 | 84 | 98 | 71 | 67 | 93 | 64 | 78 | 77 | 90 | 57 | 83 | 72 | 83 |
物理成績 | 90 | 63 | 72 | 87 | 91 | 71 | 58 | 82 | 93 | 81 | 77 | 82 | 48 | 85 | 69 | 91 | 61 | 84 | 78 | 86 |
若數(shù)學(xué)成績90分(含90分)以上為優(yōu)秀,物理成績85(含85分)以上為優(yōu)秀,則有多少把握認(rèn)為學(xué)生的數(shù)學(xué)成績與物理成績有關(guān)系( )
A. 95% B. 97.5% C. 99.5% D. 99.9%
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com