【題目】如圖,在四棱錐PABCD中,側(cè)面PAB⊥底面ABCD,底面ABCD為矩形,PAPBOAB的中點,ODPC.

(Ⅰ) 求證:OCPD

(II)若PD與平面PAB所成的角為30°,求二面角DPCB的余弦值.

【答案】(I)詳見解析(II)

【解析】

(Ⅰ)連結(jié)OP,推導(dǎo)出OPAB,從而OP⊥平面ABCD,由OPOD,OPOC,得ODOC,再由OPOC,能證明OCPD

(Ⅱ)CD的中點E,以O為原點,OE,OB,OP所在的直線分別為xy,z軸建立空間直角坐標系Oxyz.求出平面DPC與平面BPC的法向量,由此能求出二面角DPCB的余弦值.

(I)證明 如圖,連接OP.

PAPBOAB的中點,

OPAB.

∵側(cè)面PAB⊥底面ABCD

OP⊥平面ABCD,

OPODOPOC.

ODPC,∴OD⊥平面OPC,

ODOC,

OPOC,OPODO,

OC⊥平面OPD,

OCPD.

(II)解:法一 取CD的中點E,以O為原點,OE,OB,OP所在的直線分別為x,y,z軸建立空間直角坐標系Oxyz.在矩形ABCD中,由(1)得ODOC,∴AB=2AD,不妨設(shè)AD=1,則AB=2.

∵側(cè)面PAB⊥底面ABCD,底面ABCD為矩形,

DA⊥平面PAB,CB⊥平面PAB,△DPA≌△CPB

∴∠DPA為直線PD與平面PAB所成的角,

∴∠DPA=30°,∠CPB=30°,PAPB,

B(0,1,0),C(1,1,0),D(1,-1,0),P(0,0,),從而=(1,1,-),=(0,-2,0).

設(shè)平面PCD的法向量為n1=(x1y1,z1),

可取n1=(,0,1).

同理,可取平面PCB的一個法向量為n2=(0,-,-1).

于是cos〈n1n2〉==-,

∴二面角DPCB的余弦值為-.

法二 在矩形ABCD中,由(1)得ODOC,∴AB=2AD,不妨設(shè)AD=1,則AB=2.

∵側(cè)面PAB⊥底面ABCD,底面ABCD為矩形,

DA⊥平面PAB,CB⊥平面PAB,△DPA≌△CPB,

∴∠DPA為直線PD與平面PAB所成的角,

∴∠DPA=30°,∠CPB=30°,PAPB,

DPCP=2,

∴△PDC為等邊三角形.

設(shè)PC的中點為M,連接DM,則DMPC.

在Rt△CBP中,過MNMPC,交PB于點N,連接ND,則∠DMN為二面角DPCB的一個平面角.

由于∠CPB=30°,PM=1,故在Rt△PMN中,MN,PN.

∵cos∠APB

AN2+3-2×××=3,

ND2=3+1=4,

∴cos∠DMN=-

即二面角DPCB的余弦值為-.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,曲線是以原點O為中心、為焦點的橢圓的一部分,曲線是以O為頂點、為焦點的拋物線的一部分,A是曲線的交點且為鈍角,若,.

(1)求曲線的方程;

(2)過作一條與軸不垂直的直線,分別與曲線依次交于B、C、D、E四點,若GCD中點、HBE中點,問是否為定值?若是求出定值;若不是說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABCA1B1C1中,DE,F分別是B1C1,ABAA1的中點.

(1) 求證:EF∥平面A1BD;

(2) A1B1A1C1,求證:平面A1BD⊥平面BB1C1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左右焦點分別為,過點的直線與交于點. ,,則的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》第三章“衰分”介紹了比例分配問題,“衰分”是按比例遞減分配的意思,通常稱遞減的比例為“衰分比”.如:已知三人分配獎金的衰分比為,若分得獎金1000元,則所分得獎金分別為900元和810.某科研所四位技術(shù)人員甲、乙、丙、丁攻關(guān)成功,共獲得獎金59040元,若甲、乙、丙、丁按照一定的“衰分比”分配獎金,且甲與丙共獲得獎金32800元,則“衰分比”與丙所獲得的獎金分別為(

A.,12800B.12800

C.,10240D.,10240

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】月某城市國際馬拉松賽正式舉行,組委會對名裁判人員進(年齡均在歲到歲)行業(yè)務(wù)培訓(xùn),現(xiàn)按年齡(單位:歲)進行分組統(tǒng)計:第,第,第,第,第,得到的頻率分布直方圖如下:

(1)若把這名裁判人員中年齡在稱為青年組,其中男裁判名;年齡在的稱為中年組,其中男裁判.試完成列聯(lián)表并判斷能否在犯錯誤的概率不超過的前提下認為裁判員屬于不同的組別(青年組或中年組)與性別有關(guān)系?

(2)培訓(xùn)前組委會用分層抽樣調(diào)查方式在第組共抽取了名裁判人員進行座談,若將其中抽取的第組的人員記作,第組的人員記作,第組的人員記作,若組委會決定從上述名裁判人員中再隨機選人參加新聞發(fā)布會,要求這組各選人,試求裁判人員不同時被選擇的概率;

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標系中,圓的參數(shù)方程為為參數(shù)),以原點為極點,以軸為非負半軸為極軸建立極坐標系.

(1)求圓的普通方程與極坐標方程;

(2)若直線的極坐標方程為,求圓上的點到直線的最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)場有一塊等腰直角三角形的空地,其中斜邊的長度為400.為迎接“五一”觀光游,欲在邊界上選擇一點,修建觀賞小徑,其中分別在邊界上,小徑與邊界的夾角都為.區(qū)域和區(qū)域內(nèi)種植郁金香,區(qū)域內(nèi)種植月季花.

1)探究:觀賞小徑的長度之和是否為定值?請說明理由;

2)為深度體驗觀賞,準備在月季花區(qū)域內(nèi)修建小徑,當(dāng)點在何處時,三條小徑的長度和最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(1)當(dāng)時,求不等式的解集;

(2)若不等式的解集包含,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案