【題目】某農(nóng)場有一塊等腰直角三角形的空地,其中斜邊的長度為400.為迎接“五一”觀光游,欲在邊界上選擇一點,修建觀賞小徑,其中分別在邊界上,小徑與邊界的夾角都為.區(qū)域和區(qū)域內(nèi)種植郁金香,區(qū)域內(nèi)種植月季花.

1)探究:觀賞小徑的長度之和是否為定值?請說明理由;

2)為深度體驗觀賞,準備在月季花區(qū)域內(nèi)修建小徑,當點在何處時,三條小徑的長度和最小?

【答案】1)為定值,理由見解析;(2的中點.

【解析】

1)根據(jù)題意可得,結(jié)合正弦定理可分別用表示出,即可確定是否為定值;

2)在中,由余弦定理可表示出,結(jié)合基本不等式即可得,根據(jù)(1)中為定值,即可知不等式取等號的條件,進而確定點的位置及三條小徑的長度和.

1為等腰直角三角形,小徑與邊界的夾角都為

中,所以,

故由正弦定理可得

.

同理.

為定值.

2)在中,由余弦定理可得,

,

所以,.

又由(1)有,

,當且僅當時等號成立,

故當的中點位置時,三條小徑的長度和最小為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,曲線是以原點O為中心、為焦點的橢圓的一部分,曲線是以O為頂點、為焦點的拋物線的一部分,A是曲線的交點且為鈍角,若.

(1)求曲線的方程;

(2)過作一條與軸不垂直的直線,分別與曲線依次交于B、C、D、E四點,若GCD中點、HBE中點,問是否為定值?若是求出定值;若不是說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,側(cè)面PAB⊥底面ABCD,底面ABCD為矩形,PAPB,OAB的中點,ODPC.

(Ⅰ) 求證:OCPD;

(II)若PD與平面PAB所成的角為30°,求二面角DPCB的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020年初,新冠肺炎疫情襲擊全國,對人民生命安全和生產(chǎn)生活造成嚴重影響.在黨和政府強有力的抗疫領(lǐng)導下,我國控制住疫情后,一方面防止境外疫情輸入,另一方面逐步復工復產(chǎn),減輕經(jīng)濟下降對企業(yè)和民眾帶來的損失.為降低疫情影響,某廠家擬在2020年舉行某產(chǎn)品的促銷活動,經(jīng)調(diào)查測算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)萬件與年促銷費用萬元()滿足為常數(shù)),如果不搞促銷活動,則該產(chǎn)品的年銷售量只能是2萬件.已知生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)一萬件該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品年平均成本的1.5倍(此處每件產(chǎn)品年平均成本按元來計算)

1)將2020年該產(chǎn)品的利潤萬元表示為年促銷費用萬元的函數(shù);

2)該廠家2020年的促銷費用投入多少萬元時,廠家的利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學著作《九章算術(shù)》有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米兩斗五升.問,米幾何?”如圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=4(單位:升),則輸入k的值為(  。

A. 10 B. 12 C. 14 D. 16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知具有線性相關(guān)關(guān)系的兩個變量之間的幾組數(shù)據(jù)如下表所示:

2

4

6

8

10

3

6

7

10

12

1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程,并估計當時, 的值;

2)將表格中的數(shù)據(jù)看作五個點的坐標,則從這五個點中隨機抽取2個點,求恰有1個點落在直線右下方的概率.

參考公式: , .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的一個焦點與拋物線的焦點重合,且截拋物線的準線所得弦長為.

(1)求該橢圓的方程;

(2)若過點的直線與橢圓相交于 兩點,且點恰為弦的中點,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】的內(nèi)角的對邊分別為,已知.

(1)求;

(2)若 成等差數(shù)列,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】不等式對任意實數(shù)都成立,則實數(shù)的取值范圍_________

查看答案和解析>>

同步練習冊答案