15.在等差數(shù)列{an}中,a2=4,a4+a7=15.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=2${\;}^{{a}_{n}-2}$+n,求數(shù)列{bn}的前10項(xiàng)和.

分析 (1)設(shè)等差數(shù)列{an}的公差為d,由等差數(shù)列的通項(xiàng)公式可得首項(xiàng)和公差的方程,解方程即可得到所求;
(2)求得bn=2${\;}^{{a}_{n}-2}$+n=2n+n,運(yùn)用數(shù)列的求和方法:分組求和,結(jié)合等比數(shù)列和等差數(shù)列的求和公式,計(jì)算即可得到所求和.

解答 解:(1)設(shè)等差數(shù)列{an}的公差為d,
由a2=4,a4+a7=15.
得a1+d=4,(a1+3d)+(a1+6d)=15,
解得a1=3,d=1,
所以an=a1+(n-1)d=3+n-1=n+2;
(2)由(1)可得bn=2${\;}^{{a}_{n}-2}$+n=2n+n,
所以b1+b2+b3+…+b10=(2+1)+(22+2)+(23+3)+…+(210+10)
=(2+22+23+…+210)+(1+2+3+…+10)
=$\frac{2(1-{2}^{10})}{1-2}$+$\frac{(1+10)×10}{2}$=(211-2)+55=211+53=2101.

點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式和求和公式,以及等比數(shù)列的求和公式的運(yùn)用,考查數(shù)列的求和方法:分組求和,以及運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(1)求f(x)的解析式; 
(2)函數(shù)g(x)=sinx的圖象怎么變換可以得到函數(shù)f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.直線l將圓x2+y2-2x-4y=0平分,且與直線x+2y=0平行,直線l的方程為( 。
A.2x-y=0B.2x-y-2=0C.x+2y-3=0D.x+2y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.拋物線y=2x2上兩點(diǎn)A(x1,y1),B(x2,y2)關(guān)于直線y=x+m對(duì)稱,且x1•x2=-$\frac{3}{4}$,則實(shí)數(shù)m的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在華中師大一附中首屆數(shù)學(xué)節(jié)的演講比賽中,七位評(píng)委為某參賽教師打出的分?jǐn)?shù)的莖葉圖如圖所示,去掉最高分和最低分后,這位老師得分的方差為( 。
A.1.14B.1.6C.2.56D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.曲線y=(x+1)ex在點(diǎn)(0,1)處的切線方程為y=2x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.將二進(jìn)制數(shù)11011(2)轉(zhuǎn)換為10進(jìn)制數(shù)為27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.如果復(fù)數(shù)$\frac{2+ai}{1+i}(a∈R)$為純虛數(shù),則a=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.考拉茲猜想又名3n+1猜想,是指對(duì)于每一個(gè)正整數(shù),如果它是奇數(shù),則對(duì)它乘3再加1;如果它是偶數(shù),則對(duì)它除以2.如此循環(huán),最終都能得到1.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)程序,輸出的結(jié)果i=(  )
A.4B.5C.6D.7

查看答案和解析>>

同步練習(xí)冊(cè)答案