3.已知數(shù)列{an}的前n項和${S_n}=2{n^2}-n$,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若${b_n}={({-1})^n}{a_n}$,求數(shù)列{bn}的前n項和Tn

分析 (Ⅰ)由數(shù)列的求和公式,通過當(dāng)n≥2時,an=sn-sn-1,驗證n=1時,數(shù)列的通項公式是否滿足所求結(jié)果,即可求解數(shù)列{an}的通項公式.
(Ⅱ)由(Ⅰ)可求出bn,當(dāng)n為偶數(shù)時,當(dāng)n為奇數(shù)時,分別求出數(shù)列的和即可.

解答 (本小題滿分13分)
解:(Ⅰ)由${S_n}=2{n^2}-n$,
當(dāng)n≥2時,${a_n}={S_n}-{S_{n-1}}=2{n^2}-n-[{2{{({n-1})}^2}-({n-1})}]=4n-3$.
當(dāng)n=1時,a1=S1=1,而4×1-3=1,
所以數(shù)列{an}的通項公式an=4n-3,n∈N*.…(6分)
(Ⅱ)由(Ⅰ)可得${b_n}={(-1)^n}{a_n}={(-1)^n}({4n-3})$,
當(dāng)n為偶數(shù)時,${T_n}=-1+5-9+13-17+…+({4n-3})=4×\frac{n}{2}=2n$,
當(dāng)n為奇數(shù)時,n+1為偶數(shù),Tn=Tn+1-bn+1=2(n+1)-(4n+1)=-2n+1.
綜上,${T_n}=\left\{\begin{array}{l}2n,n為偶數(shù)\\-2n+1,n為奇數(shù).\end{array}\right.$      …(13分)

點評 本題考查數(shù)列的通項公式的應(yīng)用,分類討論思想的應(yīng)用,數(shù)列求和,考查分析問題解決問題的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-2,3).
(1)求|$\overrightarrow{a}$+$\overrightarrow$|與|$\overrightarrow{a}$-$\overrightarrow$|;
(2)求當(dāng)k為何值時,向量k$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$+3$\overrightarrow$垂直?
(3)求當(dāng)k為何值時,向量k$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$+3$\overrightarrow$平行?并確定兩向量平行時,它們是同向還是反向?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)f(x)=ax2+bx+2是定義在[1+a,1]上的偶函數(shù),則a+2b=( 。
A.0B.2C.-2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.自2014年1月26日悄悄上線后,微信紅包迅速流行開來,其火爆程度不亞于此前的“打飛機”小游戲,數(shù)據(jù)顯示,從除夕開始至初一16時,參與搶微信紅包的用戶超過500萬,總計搶紅包7500萬次以上.小張除夕夜向在線的小王、小李、小明隨機發(fā)放微信紅包,每次發(fā)1個.
(Ⅰ)若小張發(fā)放10元紅包3個,求小王恰得到2個的概率;
(Ⅱ)若小張發(fā)放4個紅包,其中5元的一個,10元的兩個,15元的一個,記小明所得紅包的總錢數(shù)為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知等差數(shù)列{an}(n∈N*)中,a1=1,a4=7,則數(shù)列{an}的通項公式an=2n-1;a2+a6+a10+…+a4n+10=(n+3)(4n+11).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知e為自然對數(shù)的底數(shù),若對任意的x∈[0,1],總存在唯一的y∈[-1,1],使得x+y2ey-a=0成立,則實數(shù)a的取值范圍是(  )
A.[1,e]B.$(1+\frac{1}{e},e]$C.(1,e]D.$[1+\frac{1}{e},e]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知圓C的方程為x2+y2+8x+15=0,若直線y=kx-2上至少存在一點,使得以該點為圓心,1為半徑的圓與圓C有公共點,則k的取值范圍為$-\frac{4}{3}≤k≤0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}的前n項和為Sn,a1=$\frac{1}{2}$,Sn=3an-λ(λ為常數(shù)).
(1)求λ的值及數(shù)列{an}的通項公式;
(2)記bn=$\frac{n+1}{{a}_{n}}$(n∈N*),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}是等差數(shù)列,an+1>an,a1•a10=160,a3+a8=37.
(1)求數(shù)列{an}的通項公式;
(2)若從數(shù)列{an}中依次取出第2項,第4項,第8項,第2n項,按原來的順序組成一個新數(shù)列{bn},求Sn=b1+b2+…+bn

查看答案和解析>>

同步練習(xí)冊答案