如圖,在圓錐PO中,已知PO=
2
,⊙O的直徑AB=2,點(diǎn)C在
AB
上,且∠CAB=30°,D為AC的中點(diǎn),則直線OC和平面PAC所成角的正弦值為
 
考點(diǎn):直線與平面所成的角
專題:空間角
分析:由已知易得AC⊥OD,AC⊥PO,可證面POD⊥平面PAC,由平面垂直的性質(zhì)考慮在平面POD中過(guò)O作OH⊥PD于H,則OH⊥平面PAC,∠OCH是直線OC和平面PAC所成的角,在Rt△OHC中,求解即可.
解答: 解:因?yàn)镺A=OC,D是AC的中點(diǎn),所以AC⊥OD,
又PO⊥底面⊙O,AC?底面⊙O,
所以AC⊥PO,而OD,PO是平面內(nèi)的兩條相交直線
所以AC⊥平面POD,又AC?平面PAC
所以平面POD⊥平面PAC
在平面POD中,過(guò)O作OH⊥PD于H,則OH⊥平面PAC
連接CH,則CH是OC在平面上的射影,所以∠OCH是直線OC和平面PAC所成的角
在Rt△ODA中,OD=DA.sin30°=
1
2
,
在Rt△POD中,OH=
2
×
1
2
2+
1
4
=
2
3

在Rt△OHC中,sin∠OCH=
OH
OC
=
2
3
,
故直線OC和平面PAC所成的角的正弦值為
2
3

故答案為:
2
3
點(diǎn)評(píng):本題主要考查了直線與平面垂直的判定定理的應(yīng)用,空間直線與平面所成角的求解,考查了運(yùn)算推理的能力及空間想象的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a、b、c分別是角A、B、C的對(duì)邊,
m
=(2a+c,b),
n
=(cosB,cosC),且
m
n

(1)求角B的大。
(2)設(shè)f(x)=2sinxcosxcos(A+C)-
3
2
cos2x,如果當(dāng)x∈[0,
π
2
]時(shí),不等式f(x)+λ≥0恒成立,求λ的最小值;
(3)在(2)的條件下,若將f(x)圖象向左平移t(t>0)個(gè)單位后,所得圖象為偶函數(shù)圖象;將f(x)圖象向右平移s(s>0)個(gè)單位后,所得圖象為奇函數(shù)圖象,求s+t的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1是一個(gè)正三棱柱零件,面AB1平行于正投影面,則零件的左視圖(如圖2)的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,兩塊陰影部分的面積和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式|x+1|-|x-2|<1的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C的極坐標(biāo)方程為ρ=acosθ(a>0),直線l的參數(shù)方程為
x=1+
2
2
t
y=
2
2
t
(t為參數(shù)).若直線l與曲線C相切.則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在Rt△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D,AD=9,DB=4,則AC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓x2+y2-2x+4y-4=0的圓心坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,化簡(jiǎn)cos2
A+B
2
+cos2
C
2
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案